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Foreword to the Dover Edition

Twenty years is a long time for a book, even more so for a specialist book like EPR
of Exchange Coupled Systems. Unfortunately during this time my friend
Alessandro, who co-authored the book with me, passed away in an unexpected and
untimely way. In the words of Takeji Takui who, during a symposium in Japan said
Dr. Alessandro Bencini was “… a great scientist … who had made invaluable
contribution in the field of ESR spectroscopy relevant to molecule based
magnetism.”

In my opinion, the book stands the impact of time, despite being completed
directly before the explosion of single molecule magnetism. In fact, the discovery
that some molecules containing a few magnetic ions behaving as tiny magnets
actually expanded the relevance of EPR of Exchange Coupled Systems. It was too
bad that the “single molecule magnets,” as they are usually called, are not present,
but it is good that the theory which allows the analysis of their properties is worked
out here in detail.

The other field which developed after the publication of this book is that of the
theoretical calculation of the exchange interaction, a field to which Alessandro
made important contributions. Alessandro was not scared by mathematics, and all
the parts of the book where complex formulas are competently used were his effort.
Having here described the parts of the book which would be different if the book
were written in the present day, the rest continues to provide a very useful tool in a
still expanding interdisciplinary research area.

It is to Alessandro’s daughter Victoria that I dedicate this reprint. It may be
rewarding to see your father’s book used all over the world, dear Vic; and maybe
you will appreciate your name printed so close to his. Later, I hope it will help you
to realize what a great scientist your father was.

D. GATTESCHI
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Preface

This book is intended to collect in one place as much information as possible on the
use of EPR spectroscopy in the analysis of systems in which two or more spins are
magnetically coupled. This is a field where research is very active and chemists
are elbow-to-elbow with physicists and biologists in the forefront. Here, as in
many other fields, the contributions coming from different disciplines are very
important, but for active researchers it is sometimes difficult to follow the
literature, due to differences in languages, and sources which are familiar to, e.g., a
physicist, are exotic to a chemist. Therefore, an effort is needed in order to provide
a unitary description of the many different phenomena which are collected under the
title. In order to define the arguments which are treated, it is useful to state clearly
what is not contained here. So we do not treat magnetic phenomena in conductors
and we neglect ferro- and antiferromagnetic resonance. The basic foundations of
EPR spectroscopy are supposed to be known by the reader, while we introduce the
basis of magnetic interactions between spins.

In the first two chapters we review the foundations of exchange interactions,
trying to show how the magnetic parameters are bound to the electronic structure of
the interacting centers. Chapter 3 is about the spectra of pairs, and Chapter 4 gives
a brief introduction to the spectra of systems containing more than two, but less than
infinite, centers. Chapter 5 is about relaxation, while Chapter 6 shows how the
complicated cases of infinite lattices can be tackled, and how EPR can provide
first-hand information on spin dynamics.

The following chapters report a survey of experimental data which hopefully
will be of some help as general reference to the field: Chapter 7 is about spectra of
pairs, Chapter 8 about systems in which transition metal ions are coupled to stable
organic radicals, Chapter 9 reports some examples of magnetically coupled
systems found in biological materials, a fascinating and fast expanding area,
Chapter 10 surveys low dimensional materials, and Chapter 11 finally reports the
use of EPR to characterize excitons and exciton motion. The survey is far from
complete, but hopefully it will be a useful introduction to the area.

At the end of a preface it is mandatory to express sincere thanks to all the people
who made the authors feel less desperate in their struggle with the literature to
follow and the pages to write. So first of all we would like to dedicate the book to
Ninetta, Silvia, Alessandra, and Mariella who did not oppose to the frequent
retreats from family life.

Many people read in advance some chapters and gave us useful suggestions,
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which certainly improved the manuscript. The flaws, of course, remain our
responsibility. We heartily thank E.I. Solomon, O. Kahn, G.R. Eaton, S.S. Eaton, S.
Clement, J.P. Renard, R.D. Willett, and J. Drumheller. All the people in our group
in Florence, C. Benelli, A. Dei, C. Zanchini, A. Caneschi, L. Pardi, O. Gouillou,
and R. Sessoli must be particularly thanked for acting as guinea pigs reading the
manuscript from the first stages.

Finally, it is a tradition to thank the people who typed the manuscript.
Unfortunately in this technological era we had to type the manuscript ourselves, so
that we can only thank our personal computers which made the burden bearable.

Alessandro Bencini
Dante Gatteschi
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1 Exchange and Superexchange

1.1  The Exchange Interaction

The essential fundament of the exchange (or the superexchange) interaction is the
formation of a weak bond. It is well known that spin pairing characterizes bond
formation: two isolated hydrogen atoms have a spin S = 1/2 each, but when they
couple to form a molecule, H2, the result is a spin singlet state, because the two
electrons must pair their spins to obey the Pauli principle. If the bond is strong
enough, the possibility of having the two electrons with parallel spins is very low,
and the triplet state has a much higher energy than the singlet ( , the singlet-
triplet separation, is much larger than kT at room temperature). However, if the
bonding interaction is weak, the singlet-triplet energy separation becomes smaller,
and eventually of the same order of magnitude as kT. It must be recalled here that
although the exchange interaction is a bond interaction, therefore, acting only on the
orbital coordinates of the electrons, the spin coordinates are extremely useful for
the characterization of the wave functions of the pair. In fact, the Pauli principle
imposes that the complete wave function of a system is antisymmetric with respect
to the exchange of electrons: in the above example of the hydrogen molecule the
symmetric orbital function must be coupled to the antisymmetric spin singlet
function, and the antisymmetric orbital function is coupled to the symmetric spin
triplet. Therefore, spins act as indicators of the nature of the orbital states.

When the two centers in the pair have individual spins Si different from , as can
occur when the number of unpaired electrons is larger than one, the states of the
pair are classified by the total spin quantum number S defined by the angular
momentum addition rules:

The exchange regime occurs when the interaction between two species,
characterized by individual spins S1 and S2 before turning on the coupling, yields a
number of levels characterized by different total spins, neglecting relativistic
effects, which are thermally populated within the normal range of temperatures.

With regards to the intuitively simple example of two identical species with Si =
1/2 (one unpaired electron on each noninteracting species), three cases can occur in
the limit of weak interaction. When the interaction is vanishingly small, the two
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spins are completely uncorrected and the two centers can be described by their
individual spin quantum numbers. A simple way of determining whether this
situation holds is through measurements of the magnetic susceptibility which must
be the sum of the individual susceptibilities. In principle, EPR as well can be used
to this purpose, and one should observe the spectra of the individual spins.
However, EPR is a much more sensitive technique than static magnetic
susceptibility measurements, and even residual interactions, including magnetic
dipolar interactions, as small as a fraction of wave number, can be enough to yield
spectra very different from the spectra of the individual spins. In other words, EPR
moves the limit for vanishingly small interaction to much lower energy than in the
case of magnetic susceptibility. Indeed, for the latter the limit is always of the order
of kT, and unless extremely low temperatures are reached, it cannot become much
smaller than 1 cm−1. EPR can easily detect interactions of 10−2–10−3 cm−1 even at
room temperature. Even two spins as far apart as 1000 pm can be found to be
interacting by the EPR technique.

The second limiting case occurs when the two spins are coupled in such a way
that the singlet is the ground state and the triplet is thermally populated. In this case
the coupling is said to be antiferromagnetic.

The third limiting case occurs when the triplet is the ground state and the singlet
is thermally populated. In this case the coupling is said to be ferromagnetic.

When the two individual spins have Si  1/2, the situation is similar: the
antiferromagnetic case is obtained when S = |S1 — S2| is the ground state, and the
ferromagnetic case is obtained when S = S1 + S2 has the lowest energy. A simple
picture of the three limiting cases for S1 = S2 = 1/2 is shown in Fig. 1.1.

The exchange regime can be rarely obtained when two paramagnetic atoms are
directly bound, but generally this situation is found in more complex molecules. A
rather common case is that of two paramagnetic metal ions which are bridged by
some intervening, formally diamagnetic, atoms. A relevant example is shown in
Fig. 1.2. The two copper(II) ions, which have a ground d9 configuration, and one
unpaired electron each, are bridged by one oxalato ion. It has been found
experimentally [1.1] that the Cu(ox)Cu moiety has a ground singlet and an excited
triplet at ≈ 385 cm−1. Since the copper-copper distance, > 500 pm, is too long to
justify any direct overlap between the two metal ions, it must be concluded that the
diamagnetic oxalato ion is effectively transmitting the exchange interaction. This
situation, in which the paramagnetic centers are coupled through intervening
diamagnetic atoms, or groups of atoms, is referred to as superexchange.

In order to put all the above qualitative conclusions on a more quantitative basis
it is necessary to resort to some model for the description of the chemical bond
intervening between the two individual species. The first successful attempt in this
direction was made by Anderson [1.2], who used a Valence Bond approach and
clarified which terms are responsible for the coupling. Much effort has been made
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[1.3–5] since then to translate Anderson’s approach into the Molecular Orbital
language, which is much more familiar to chemists, for instance, due to the relative
ease with which calculations can be performed in this scheme. In particular, in the
last few years, with the advent of fast computers, it has become possible to pass to
the truly quantitative description, actually calculating the extent of the interaction.

Fig. 1.1a–c. Scheme of the energy levels appropriate to a pair of spins . a Uncorrelated spins; b
antiferromagnetic coupling; c ferromagnetic coupling

Fig. 1.2. Scheme of two copper ions bridged by one oxalato group

In the following sections we will resume the Anderson’s theory, then the
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qualitative MO models, and finally we will give a description of the quantitative
MO calculations.

1.2  Anderson’s Theory

Anderson’s theory [1.2] takes a firm standpoint in the theory of magnetic
interactions. Before that many important contributions were provided by
Heisenberg [1.6,7], Dirac [1.8], van Vleck [1.9], and many others [1.10,11], but the
literature was full of confusion regarding the use of orthogonal or non-orthogonal
basis functions.

Anderson’s theory was developed to describe exchange in insulators, but it is
most simply understood when applied to a pair of interacting centers, e.g., to two
identical transition metal ions possessing one unpaired electron each. The basis
functions are localized on the centers A and B (Fig. 1.3) and correspond essentially
to the functions of the two centers in an environment where the other magnetic
species is not present. They may as well include orbitals of other atoms, especially
the ones of the atoms bridging A and B. These functions are then allowed to
interact, and in order to do that it is necessary to correct the functions to take into
account the fact that electrons are no longer localized on center A or B,
respectively, but those of A, e.g., can now be partially delocalized on B. The
central assumption which is made is that the delocalization of the electron of A on
B is far from complete, i.e., the bonding interaction is not strong, as was outlined in
the previous section. Anderson assumes that this is performed through a
perturbation treatment. Indeed, if an electron is removed from A and transferred to
B, the ionic form A + B− is obtained, and the two electrons on B must necessarily
be paired. Therefore, the singlet is stabilized over the triplet according to the
admixture of the ionic state into the ground state. The energy of the ionic state is
higher than the energy of the unperturbed state by an amount U, corresponding to the
average electrostatic repulsion energy for the two electrons on the same site. On the
other hand, the delocalization stabilizes the singlet affecting the average kinetic
energy of the electrons. This is represented by a transfer integral, b12, between the
orbitals 1, localized on A, and the orbital 2, localized on B. In the case of only two
interacting orbitals this yields a stabilization of the singlet corresponding to:

This is called kinetic exchange, and is intrinsically antiferromagnetic.
The second effect which must be taken into account is the exchange, determined

by the self-energy of the charge distribution :
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This term was called potential exchange, and it stabilizes the triplet over the
singlet according to Hund’s rule. Anderson uses also the term superexchange for the
kinetic exchange, but we prefer to avoid it, because it can generate confusion with
the current meaning of interaction propagated by intervening atoms. He also uses
the term direct for potential exchange, but again we prefer the term used in the text,
because generally with direct exchange one understands an interaction not
propagated by intervening atoms.

Fig. 1.3. Scheme of two paramagnetic centers, A and B, bridged by a diamagnetic group C

In the case of one unpaired electron on each center, the singlet-triplet separation
can be written as:

When there is more than one unpaired electron per center, the energies of the
various spin multiplets can still be expressed by one parameter:

The formalism which allows us to do that will be developed in Chap. 2.
Finally, a third term was taken into consideration. This is due to polarization

effects which are determined by the presence of magnetic electrons. In fact, for
open shell systems the energy of the spin-up orbitals must be different from the
energy of the spin-down ones, because of the exchange terms in the Hartree-Fock
equations, which are nonzero for electrons with the same spin. This effect, for
instance, is capable of inducing unpaired spin density on a formally diamagnetic
ligand, by favoring one spin state over the other. The total effect of this term can be
either ferro- or antiferromagnetic, depending on the nature of the interacting
orbitals. This is much more difficult to appreciate qualitatively, and it has been
generally neglected.

This model developed by Anderson has had the great merit of putting on a firm
theoretical basis the exchange interactions, clarifying all the points which had
become inextricably entangled in the previous literature. The main drawback of the
theory has been that passing to the true quantitative approach has proved to be
practically impossible, after some initial attempts [1.12–17]. As Anderson states
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[1.2]: “it seems wise not to claim more than about 100% accuracy for the theory in
view of the uncertainties”.

However, this rationalization allowed Goodenough [1.18, 19] and Kanamori [1.20]
to express some rules, which for quite some time now have been the bible for
experimentalists wishing to understand the magnetic properties of transition metal
compounds. They can be expressed as follows:

1.  When the two ions have lobes of magnetic orbitals (the orbitals containing the
unpaired electrons) pointing toward each other in such a way that the orbitals
would have a reasonably large overlap integral, the exchange is
antiferromagnetic;

2.  When the orbitals are arranged in such a way that they are expected to be in
contact but have no overlap integral, the interaction is ferromagnetic;

3.  If a magnetic orbital overlaps an empty orbital, the interaction between the two
ions is ferromagnetic.

The most thorough and detailed exploitation of these rules has been made in a
review article by Ginsberg [1.21], to which the interested reader is referred.

It is perhaps useful at this point to work out an example in order to familiarize
the techniques which allow one to understand, in a qualitative way, how exchange
operates between magnetic orbitals. Let us focus on one of the possible geometries
of pairs, such as that depicted in Fig. 1.4, which corresponds to two octahedra
joined thorough one side. If the two metal ions are copper(II), with a d9

configuration, the magnetic orbitals are of the xy type, in an appropriate reference
frame. The bridge atom, which might be an oxygen atom, has both s and p orbitals
completely filled. The xy orbital of the left atom overlaps the s orbitals of the
oxygens, which in turn overlap the xy orbital of the right copper. According to rule
(1) of Goodenough and Kanamori, this corresponds to an antiferromagnetic
pathway, which can be symbolically written as: xy||s||xy. Since the oxygen orbital is
spheric, the extent of the coupling does not depend on the copper-oxygen-copper
angle, but only on the copper-oxygen distance. Matters are different when we
consider the overlap with a p orbital. The overlap with, e.g., the right copper ion
can be maximized (Fig. 1.5), but then the overlap with the left xy orbital is
determined by the geometry of the bridge. If the O–Cu–O angle, ϕ, is 90°, the
overlap of the latter with the p orbital is zero, but a variation in the value of the
angle can restore an overlap different from zero. In the case of ϕ = 90° the exchange
pathway can be written as: xy||p⊥xy, which according to Goodenough-Kanamori
rules, corresponds to a ferromagnetic coupling, while in case of ϕ 90° the
pathway can be written as: xy||p||xy, which gives antiferromagnetic coupling. Since
the oxygen atoms have both s and p orbitals, both exchange mechanisms must be
operative. However, the p orbitals must interact more strongly, because their
energies are closer to those of the d orbitals than that of the s orbitals. Therefore, it
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can be anticipated that for bridges characterized by Cu–O–Cu angles close to 90°
the coupling must be ferromagnetic, while when the angle deviates substantially
from this value, the coupling becomes antiferromagnetic. This has been
experimentally confirmed [1.22, 23].

Fig. 1.4. Two octahedrally coordinated copper(II) ions bridged by sharing an edge

Fig. 1.5. Overlaps of the oxygen p orbitals with the copper xy orbitals

If one of the copper ions is substituted by another metal ion, such as
oxovanadium(IV), an interesting case is obtained. The magnetic orbital of
oxovanadium(IV), a d1 ion, is x2–y2. If we consider the s pathway, we immediately
recognize that the oxygen orbitals can overlap to the xy orbital of copper, but they
are orthogonal to the vanadium x2–y2 orbital. Therefore, this provides an
xy||s⊥x2–y2 pathway, which determines a ferromagnetic coupling. One p orbital of
the oxygen atom can overlap to the xy orbital of copper, and at the same time it
overlaps to the x2–y2 orbitals of vanadium. The same situation holds for the other
oxygen as well, so that one might be induced to anticipate an antiferromagnetic
coupling between copper and vanadium. However, this prediction is wrong, and
both theory and experiment agree on a ferromagnetic coupling [1.24]. In fact, the
overlap of the up-oxygen in Fig. 1.6 with the magnetic orbital of vanadium is equal,
but of opposite sign, compared to the overlap of the down-oxygen. If one is not
convinced of the argument, one can try to overlap the orbitals in different ways, but
in any case the final result will be the one expressed above. A safer way to check is
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by using symmetry arguments. Apparently, considering the symmetry plane passing
through copper and vanadium, xy is antisymmetric, while x2–y2 is symmetric;
therefore, their overlap must be zero. This example is precious because it shows,
when more than one bridging atom is present, that it is not enough to look at the
possible independent exchange pathways, but the overall system must be taken into
consideration.

Another example which is useful to consider, concerns systems with more than
one unpaired electron on each center. In general, when there are more than one
unpaired electrons on each center, the experimental coupling constant J, is
decomposed in a sum of contributions according to:

Fig. 1.6. Overlaps of the oxygen p orbitals with the copper xy and oxovanadium x2 – y2 orbitals

where n1 and n2 are the numbers of unpaired electrons on center 1 and 2,
respectively, the sums are on all the magnetic orbitals of the two centers. The
meaning of the Jij constants is that of the coupling of an electron in the magnetic
orbital i with an electron in the magnetic orbital j. If we substitute the
oxovanadium(IV) with a manganese(II), we have one unpaired electron on the
copper(II) ion, and five on the manganese(II), which has a ground d5 configuration.
Now we have to consider the interactions of the xy magnetic orbital on copper with
the five magnetic orbitals on manganese. When the Cu–O–Mn angle is different
from 90°, the pathway connecting the xy magnetic orbitals on the two metal ions is
antiferromagnetic. All the other possible overlaps of xy with x2–y2, xz, yz, and z2

are zero, therefore, all of these determine ferromagnetic coupling pathways. In
general, if there is one antiferromagnetic pathway, it dominates, and indeed the
observed coupling is antiferromagnetic in several copper-manganese pairs [1.25].

Finally, we want to discuss the coupling propagated by extended bridges. One
interesting example is provided by μ-carbonato bridged copper(II) complexes. In
Fig. 1.7 an arrangement, experimentally observed, is shown which corresponds to a
very strong antiferromagnetic coupling. In fact, the singlet-triplet separation has
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been estimated [1.26] to be larger than 1000 cm−1. The origin of this behavior is in
the strong overlap of the metal orbitals with the HOMO of the carbonate ion [1.27],
as shown in Fig. 1.8. The main interaction is given by the overlap with the p orbital
of the oxygen atom which lies approximately on the line connecting the two copper
ions.

Fig. 1.7. Scheme of the geometry of μ-carbonato copper(II) bridged pairs

Fig. 1.8. Scheme of the orbitals responsible of the strong coupling in μ-carbonato bridged copper(II) pairs

This last example shows that when the nature of the bridges becomes more
complex, simple qualitative considerations such as those we have worked out in
this section become very difficult. In fact, beyond the stated impossibility of
calculating the exchange interaction, the other drawback of Anderson’s theory and
the Goodenough-Kanamori rules is that the analysis, even at the qualitative level,
becomes cumbersome for low symmetry complexes and for extended polyatomic
bridges. It must be stressed that the above theory and rules were produced in the
1950s, and in a physical environment, with the interest directed on ionic lattices.
For these compounds the symmetry is relatively high and the ligands bridging
transition metal ions are simple anions such as O2−, F−, S2−, etc.

When chemists became more and more involved in the synthesis of molecular
compounds in which paramagnetic transition metal ions are bridged by an
incredible variety of different ligands, the simple Goodenough-Kanamori rules
became impossible to apply, and new models, based on the MO scheme so familiar
to chemists, had to be developed. This happened in the mid-1970s and we shall
briefly discuss some of them in the next sections.
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1.3  Molecular Orbital Exchange Models

At first glance it might be assumed that the MO treatment of exchange phenomena
should not be a very difficult task. Indeed, concentrating for the sake of simplicity
on a symmetric bimetallic system with one unpaired electron on each center, and
using for the same reason the one-electron approximation, the orbitals containing
the unpaired electrons can be described by two linear combinations:

which are depicted in Fig. 1.9. ψg and ψu will have different energies, and let us
assume that ψg lies lowest. ΦA and ΦB are essentially atomic orbitals of the two
metal ions. Actually in ψg and ψu ligand functions will be present also, although we
do not write them out explicitly. Now, in the assumption of weak interaction
between the two metal centers, which is central to all our treatments, the energy
separation between the two MO’s, , is small. As a consequence, the two
magnetic electrons should occupy the two orbitals, ψg, and ψu, yielding a ground
triplet state. This is clearly in sharp contrast with the experimental data, which
show that both ground triplet and singlet states can be obtained. Further, the latter
are much more common than the former! The breakdown of the simple (naive) MO
approach outlined here is far from being unexpected, and is due to the neglect of
electron correlation which is intrinsic to the MO model at this low level of
approximation. This is the same reason why the zero-order VB approximation to
the hydrogen molecule is much better than the corresponding MO wave function
which introduces “covalent” and “ionic” terms with identical weights. In the
present case the MO starting point is even more approximate than in the H2
molecule due to the small overlap between ΦA and ΦB, which makes the
probability of having two electrons at the same time on either the left or the right
metal ion extremely improbable.

Fig. 1.9. Scheme of the two-center molecular orbitals
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Several corrections to this extremely simple scheme have been suggested, either
performing configuration interaction calculations, at various degrees of
sophistication, or using a modified model, which makes the MO model closer to the
VB.

Among the former, one particularly well suited to a semiquantitative discussion
is that put forward by Hay et al. [1.3]. In a short outline of this method we can say
that the HOMO’s, which, in the treatment of these authors, should be obtained
through SCF calculations on the triplet state, are first of all localized on the two
metal centers by the transformations:

It is easy to verify, using (1.7) and (1.8), that Φa and Φb are indeed largely
localized on A and B, respectively, but they include ligand functions as well. Also,
it is important to note that Φa and Φb are orthogonal to each other, while ΦA and
ΦB were not. In Fig. 1.10 the Φa and ΦA orbitals in a model dinuclear copper(II)
complex are shown.

Using these orbitals, the energy separation between the singlet and the triplet
state is obtained by a perturbation treatment, which allows for the configuration
interaction admixture of excited states into the ground singlet, as:

where Kab is the exchange integral relative to the Φa and Φb orthogonalized
molecular orbitals, Jaa and Jab are the corresponding Coulomb integrals, and εg and
εu are the energies of the Φg and Φu MO’s. Equation (1.11) is occasionally written
as:
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Fig. 1.10 a, b. Scheme of a localized molecular orbital; b non-orthogonal magnetic orbital

where F stands for ferro- and AF for antiferromagnetic contribution, and:

Indeed, with orthogonalized orbitals Kab is always positive and stabilizes the
triplet state, while the JAF term is always positive and stabilizes the singlet state.

Central to this model is the appreciation that in a series of complexes which
differ essentially for geometrical parameters in the bridge, the most rapidly varying
quantity is (εg – εu), therefore, the dependence of the singlet-triplet splitting on the
structural parameters of the complexes can be understood by calculating the
energies of the MO’s as a function of those parameters and observing the variation
of εg – εu. This can be easily done within an Extended Hückel model.

It is perhaps useful to make this point clear with an example. Experimentally it is
found that the singlet-triplet separation in μ-hydroxo bridged complexes is linearly
dependent on the Cu–O–Cu angle, α, of the bridge [1.22,23], as shown in Fig. 1.11.
It is appreciated that for a α < 97° the triplet lies lower, while for α > 97° it is the
singlet which is the ground state. Beyond di-μ-hydroxo complexes also other μ-oxo
bridged complexes are reported here, showing a less regular behavior. The linear
dependence of the di-μ-hydroxo bridged species is qualitatively understood with
simple extended Hückel calculations performed on model systems. In Fig. 1.12 the
energies of the orbitals εg and εu are plotted versus the α angle. The two levels are
degenerate for α = 97° and they increase their energy difference on both sides.
When εg– εu is zero (or at least small) JAF = 0, and the JF term dominates,
stabilizing the triplet state. When the difference increases, JAF dominates and the
singlet becomes the ground state. It is interesting to note how the Extended Hiickel
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calculations put on a semi-quantitative basis the considerations we worked out in
Sect. 1.2 for illustrating the Goodenough-Kanamori rules. Indeed, it is the presence
of both s and p overlaps which determines the crossover from ferro- to
antiferromagnetic coupling at 97°, rather than the value of 90° which would be
anticipated for a pure p overlap.

The main limitation of this model is that within the Extended Hückel model there
is no possibility to evaluate JF, therefore, it is not possible to calculate J. However,
this model has been used with success also as a basis of an ab initio treatment
which estimates J on the basis of a perturbation procedure (see next section). It is
also worth noting here that the success of the Extended Hückel model is essentially
based on the topological properties of the complexes, therefore, the same results
can be qualitatively obtained also within the Angular Overlap Model (AOM) [1.5].

Fig. 1.11. Angular dependence of the J coupling constants in di-μ-oxo bridged copper(II) complexes.  μ-
hydroxo;  μ-alkoxo;  μ-phenoxo;  μ-pyridine-N-oxo. After [1.28]
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Fig. 1.12. lot of εg and εu vs. the Cu–O–Cu angle in di-μ-hydroxo bridged copper(II) complexes.

Another qualitative model was put forward by Kahn et al. [1.4] who use
nonorthogonal molecular orbitals of the type shown in Fig. 10.b. In this frame the
singlet-triplet energy separation depends on the overlap between the two orbitals,
according to the relation:

where  is the energy difference between the two highest occupied orbitals, and S
is the overlap integral between the two nonorthogonal magnetic orbitals. The main
advantage of this approach is that the nonorthogonalized magnetic orbitals are much
easier to visualize than their orthogonal counterparts, being the MO (or simply the
Ligand Field) orbitals of the mononuclear moieties which make up the the
interacting pair. As such they have been widely used for rationalizing the observed
magnetic properties and also for designing new types of interacting pairs with
novel properties.
An interesting application of the model has been made to obtain at least an
estimation of the ferromagnetic contribution [1.29]. The exchange integral, Kab, can
be witten as:

By putting:
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with i = 1, 2, Eq. (1.16), can be rewriten as:

which shows how Kab strongly depends on the ρi quantities, which are called
overlap densities. In order to have a large KAB it is necessary that the ρi’s have
large extrema at the bridging ligands, where the overlap of the ΦA and ΦB functions
is maximum. A case in which this situation is obtained is that of di-μ-hydroxo
bridged copper(II) complexes with ϕ = 95° and 110° whose calculated overlap
densities [1.30] are shown in Fig. 1.13. The curves show two positive lobes along
the x axis and two negative lobes along the y axis around each bridge. Since the
altitude of the positive lobes and the depth of the negative lobes cancel themselves,
in the former case the overall overlap between ΦA and ΦB is zero, so that JAF = 0.
However, this is not true for the exchange integral which is only sensitive to the
extrema of the overlap density, not to their sign. As a consequence, the JF term
dominates for this compound, and the triplet lies lowest, as observed
experimentally. When ϕ = 110°, on the other hand, the magnitude of the positive
lobes prevails over that of the negative lobes, and the antiferromagnetic component
is dominant.
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Fig. 1.13. Overlap density for model di-μ-hydroxo bridged copper(II) complexes

In a sense, the advantage of this approach is that of making clear with a picture,
obtained for example through simple Extended Hückel calculations, the qualitative
statements of rule (2) of Goodenough-Kanamori.

1.4  Quantitative MO Calculations of Singlet-Triplet
Splitting

26



The first ab initio calculation of the singlet-triplet splitting in a symmetric metal
dimer was reported in 1981 [1.31]. The energy separation was obtained through a
perturbation treatment performed on the restricted Hartree-Fock MO’s of the triplet
state of copper acetate hydrate, whose structure is shown in Fig. 1.14. In a sense it
is extremely pleasant that the first calculation was performed on the first molecular
compound which was recognized to be dinuclear through EPR spectroscopy [1.32].
The orbitals ψg and ψu are first localized, as in Eqs. (1.9-10), and the various terms
are calculated as in Anderson’s theory. What is important is that the corrections
which are needed are not only those due to kinetic exchange, potential exchange,
and exchange polarization, but also other terms must be added, in order to
reproduce the experimental data. In particular it is necessary to include also
excitations from one of the metal orbitals, Φa or Φb, to a vacant orbital, or from one
of the doubly occupied orbitals to one of the metal orbitals. Finally, double
excitations different from those corresponding to exchange polarization are also
needed. Perhaps for the present book what is now interesting is checking the
relative importance of all these terms in a series of complexes. This is done in
Table 1.1, where the calculated contributions to the experimental singlet-triplet
splitting of di-μ-hydroxo bridged copper(II) complexes are reported [1.33]. If we
look at the three canonical terms of Anderson’s theory, namely potential exchange,
kinetic exchange and exchange polarization, we see that alone they are not able at
all to reproduce the experimental data and that the terms that in Table 1.1 are
labeled as others are indeed responsible for very large corrections. Also it is in a
sense shocking to verify that the potential exchange term, which in most qualitative
theories, including Anderson’s, is considered as small, is indeed the largest term!
All these considerations are a little discouraging, and might induce the reader to
complain over the time spent on the previous pages. However, there is still a
consideration to be made which reconciles with the theories of the previous
sections the term which varies more rapidly in the series is the kinetic exchange,
whose difference in Table 1.1 is almost six times larger than that of the largest of
all the others. Therefore, it seems that focusing on this is a reasonable procedure
when looking at the variation of the coupling in a series of compounds.
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Fig. 1.14. Scheme of the structure of copper acetate hydrate

Table 1.1. Calculated singlet-triplet splittings in di-μ-hydroxo bridged copper(II) complexesa

a Values in cm−1, After [1.33].

Fig. 1.15. Scheme of  pairs. ϕ is the dihedral angle between the planes defined by the terminal and
bridging chlorine atoms

The only other theoretical approach which has been applied quantitatively to the
calculation of exchange-coupling constants of transition-metal systems has been that
of broken symmetry states [1.34]. Since this has been used within the Xα density
functional theory [1.35–37], we will refer to this in the following, although the
method can in principle be applied to unrestricted Hartree-Fock ab initio methods
as well.

The essential feature of what has been called [1.34] the VB-Xα method (VB here
denotes as usual valence bond) is that of using nonorthogonalized MO’s: in this
way only one configuration is needed since the excited states already appear in the
non-orthogonalized molecular orbitals. The nonorthogonalization procedure is
performed using a broken symmetry approach. This is best represented by an
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example. Let us consider a  dimer as shown in Fig. 1.15. The molecular
symmetry is D2d and the calculation can be performed for the triplet state in this
limit. Using a spin-unrestricted approach (different orbitals for different spins), it is
possible to define a state in which the magnetic orbital on the left copper atom is
occupied by an electron with spin-up and that of the right copper by an electron
with spin-down, by removing the symmetry elements which transform the two
copper atoms one into the other and by imposing a mirror symmetry to the spin
densities. In the  case this can be done by performing the calculation
imposing C2v instead of D2d symmetry. The resulting state, named broken symmetry
state, is not a pure spin state (it will be an admixture of singlet and triplet) but its
energy can be related to that of the pure spin states through standard spin projection
techniques. In Fig. 1.16 contour maps of the magnetic orbitals are plotted [1.38] in
the xy plane for various values of ϕ. It is apparent that for both ϕ = 0° and 70° the
orbitals are largely delocalized, while for ϕ = 45° they are strongly localized on the
left and right copper atoms, respectively. The ϕ = 0° and 70° correspond to
antiferromagnetic coupling (relatively large covalency determines large
delocalization), while ϕ = 45° corresponds to ferromagnetic coupling (relatively
weak covalency favors the localized picture). The broken symmetry state is
equivalent to a state constructed using nonorthogonal orbitals:
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Fig. 1.16. Contour map of the magnetic orbitals of  plotted in the xy plane for ϕ = 0° (below), ϕ =
45° (middle), and ϕ = 70° (top). Spin-up levels are plotted on the left, spin-down levels on the right

Table 1.2. Computed and observed coupling constants in  dimersa
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a After [1.38].

therefore, one configuration is enough for estimating the singlet-triplet splitting.
This is obtained by calculating the difference between the total energy of the pure
triplet, ET, and that of the broken symmetry state, EB, according to the relation:

The values of J have been computed for  systems as a function of the
dihedral angle, ϕ, between the planes of the terminal and the bridging chlorine
atoms. The results shown in Table 1.2 are in fair agreement with the experimental
data, and also with ab initio calculations performed on the same systems.
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2 Spin Hamiltonians

2.1  The Spin Hamiltonian Approach

The replacement of the true hamiltonian of a system with an effective one which
operates only on the spin variables is commonplace in all areas of magnetic
resonance spectroscopy. This is a parametric approach, which is helpful for the
interpretation of sets of experimental data. The parameters which are obtained have
no particular meaning per se, but they must be compared with more fundamental
theory. When one finds, for example, that the EPR spectra of a copper(II) complex
can be interpreted within the spin hamiltonian formalism to yield g|| = 2.20, g⊥ =
2.06, it is only recurring to ligand field theory that the conclusion can be made that
the unpaired electron is located in either a x2 – y2 or a xy orbital.

It is therefore the great simplicity of the spin hamiltonian approach which makes
it so well suited for the analysis of complex systems, allowing at least a first-order
rationalization of their properties. For example in Fig. 2.1 the temperature
dependence of the magnetic susceptibility of copper acetate hydrate [2.1] is shown
whose structure was shown in Fig. 1.14. The experimental points show that the
susceptibility increases on decreasing temperature in the range 300–280 K, while it
decreases on decreasing further the temperature below 280 K. This behavior is
easily interpreted within a simple spin hamiltonian formalism to yield a parameter
J = 280 cm−1, which is a measure of the energy separation of the singlet and triplet
states orginating from the interaction of the two unpaired electrons localized on the
two copper ions. The sign of J indicates that the singlet lies lower, i.e., the coupling
is antiferromagnetic. Explaining both the sign and the intensity of the interaction can
be done only within the theories developed in the previous sections, but some
important results have already been achieved with the much simpler spin
hamiltonian model.

The main difficulty related to the spin hamiltonian model is the justification of
the model itself. Therefore, in order not to complicate the situation too much at this
stage, we defer this discussion to Sect. 2.5 and develop the spin hamiltonian
formalism first.

Let us assume two centers, A and B, whose individual magnetic properties,
before allowing them to interact, can be described by the effective spin operators
SA and SB, respectively. The spin quantum numbers SA and SB, may, or may not,
correspond to the true spin of the system. In general, we may say that the value of
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SA (SB) is such that 2SA + 1 (2SB + 1) equals the multiplicity of the levels which
are thermally populated. In the hypothesis that the ground states are orbitally
nondegenerate and that the excited levels are much higher in energy, the interaction
between the two spins can be described by the hamiltonian:

Fig. 2.1. Temperature dependence of the magnetic susceptibility (open circles) and moment (closed circles) of
copper acetate hydrate. After [2.1]

where JAB is a dyadic, i.e., a general tensor, which contains all the relevant
exchange parameters.

Equation (2.1) is a bilinear relation in the Si operators. We may expect that also
higher power terms can be added, and in fact biquadratic terms have sometimes
been added (odd powers are not allowed because they do not yield totally
symmetric representations). We will discuss these possibilities in Sect. 2.4.

Any second-rank tensor, J, can be decomposed [2.2] into the sum of a symmetric,
S, and an antisymmetric, A, tensor, according to:

where  and . The antisymmetric tensor is
traceless and S can be made traceless by subtracting from the diagonal elements
one-third of the trace, so that
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where E is the identity matrix and J= 1/3 Tr(J). Using this decomposition Eq. (2.1)
can be rewritten as:

Figure 2.2. A scheme of a magnetic chain

where JAB is a scalar, dAB is a polar vector, and DAB is a symmetric traceless
tensor. The components of dAB are given by:

The first term in Eq. (2.4) is called isotropic, the second antisymmetric, and the
third anisotropic spin-spin interaction. Both Eqs. (2.1) and (2.4) can be easily
extended to the case of N interacting spins by summing over all the possible pairs.
Quite often only the nearest neighbor interactions are taken into consideration, i.e.,
only those involving adjacent spins. For instance, in a chain of spins as that shown
in Fig. 2.2, only the interactions of the i-th spin with the (i – 1)-th and (i + 1)-th
will be taken into account on this assumption.

The nature of the interaction between the spins, represented either by JAB or by
the set JAB; dAB, DAB, can be twofold, either through space or through bonds. The
former is the magnetic interaction between the spins, which at the simplest level
can be taken as the interaction between magnetic dipoles centered at the A and B
sites, while the latter is the exchange interaction which has been introduced in the
previous chapter. The two will be treated separately in the next two sections.

2.2  The Magnetic Spin-Spin Interaction

When the two interacting spins A and B are sufficiently removed one from the other
it is conceivable that their magnetic interaction reduces to that of two magnetic
dipoles separated by the A – B distance, R. The magnetic dipoles of the two spins
are given by:

where i = A, B, μB is the Bohr magneton, and gi is the g tensor of the individual i
center. The classic form of interaction between the two spins can be written as:
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where

R is a unit vector parallel to the A – B direction.
An example may help to clarify the meaning of Eq. (2.8). Let us consider a

hypothetic dinuclear species as shown in Fig. 2.3. A and B can be, for instance,
copper(II) and manganese(II). A possible reference frame for the pair is that shown
in Fig. 2.3. The g tensor for the manganese ion can be reasonably assumed to be
isotropic and equal to ge = 2.00:

where E is the identity matrix, the g tensor for the copper ion can be assumed to be
axial: gzz = 2.00, gxx = gyy = 2.20. The vector R has components (0, sinα, cosα).
Therefore, the matrix  in this case takes the form:

The matrix can be decomposed according to Eqs. (2.2) and (2.3) into an isotropic,
an anisotropic, and an antisymmetric part. The isotropic part of Eq. (2.10) is:

If R is expressed in Ångstrøm and J in cm−1, the numerical value of μB
2 is 0.433,

which means that for a metal-metal distance of 3.50 A and a = 45° the isotropic part
of the dipolar interaction is only 7 × 10−4 cm−1, as shown in Table 2.1. The
antisymmetric and the anisotropic parts of the  matrix are:
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Fig. 2.3. Scheme of a dinuclear species formed by two trigonal bipyramidal complexes

Table 2.1. Calculated values of the dipolar matrix for a pair of interacting copper(II)-manganese(II) ionsa

a The distance in pm, the spin hamiltonian parameters in 10–1 cm−1.
The values were calculated setting gcu, x = gcu, y = 2.2; gcu, z = 2.0; gMn, x = gMn, y = gMn, z = 2.0, α =
45°.

and the matrix, which is expressed in units , is symmetric by construction.

all the other elements being zero.
In the above example the only component of dAB which is different from zero is

that parallel to x. This is in accord with the symmetry rules for antisymmetric spin-
spin interactions. These have been given by Moryia [2.3] and state that dAB is zero
if a center of symmetry relates the two interacting spins. Further, when a mirror
plane is present, including A and B, dAB is orthogonal to the mirror plane (this is
the case for our example); when a mirror plane perpendicular to AB bisects it, then
dAB is parallel to the mirror plane; when a twofold rotation axis perpendicular to A
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–B passes through the midpoint of A –B, then dAB is orthogonal to the twofold axis;
when there is an n-fold axis (n > 2) along A – B, then dAB is parallel to A – B.

The anisotropic component of the dipolar interaction in the above example is not
diagonal. However, it can be reduced to a diagonal form by a standard procedure
yielding the principal values:

where

The X axis is parallel to x, while Z is practically parallel to the A – B direction.
The largest component of , in absolute value, is along the Z direction, and the
sign of (ZZ) is negative. This is a general result, which we must always expect
whenever the point dipolar approximation is valid: the largest anisotropic
component has a negative sign and is directed approximately along the A – B
direction, when the anisotropy of the g tensors is not large, such as is the case for
orbitally non-degenerate ground states. The other two directions are determined by
the relative orientations of the gA and gB tensors and by their anisotropies. In the
same approximation as above the two principal values along the X and Y axes are
not expected to be too different from each other, yielding a substantially axial 
tensor.

The values of all the above quantities, calculated for the copper-manganese
example, are given in Table 2.1. They are calculated for three different distances R
and, due to the R−3 dependence, they rapidly decrease on increasing the A – B
distance.

The point dipolar approximation fails when the distance between the two spins
is not large compared to the average distance of the unpaired electrons from their
nuclei. This can be the case for some organic biradicals, such as dinitroxides, e.g.,
in Fig. 2.4. Also, we want to mention a transition metal complex in which the metal
ion is bound to an organic radical such as the one shown in Fig. 2.5. In this
compound the central copper(II) ion is octahedrally coordinated by four oxygen
atoms of two hexafluoroacetylacetonato ligands, by an OH group, and by an NO
group of two different TEMPOL ligands [2.4]. TEMPOL is the nitroxide 4-
hydroxy-2,2,6,6-tetramethyl piperidinyl-N-oxy. Each TEMPOL ligand binds to two
different copper(II) ions so that a linear chain is formed. The magnetic data have
shown [2.5] that there is a weak ferromagnetic interaction between the copper ion
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and the organic radical (the singlet-triplet separation has been estimated to be 15
cm−1), and the EPR spectra are typical of a triplet with a zero field splitting
characterized by D = 0.1710 cm−1, and E/D = 1/3. Now the distance between the
copper ion and the oxygen atom of the NO group, which formally carries a good
portion of the unpaired spin density of the radical, is fairly short, 245 pm, so that
the point dipolar assumption in this case appears to be questionable.

An alternative procedure to the point dipolar approximation requires an MO
approach. The molecule must be treated within a suitable MO formalism, obtaining
the eigenvectors of the magnetic orbitals, i.e., of the orbitals carrying the unpaired
electrons, Φi. The correct matrix of the spin-spin interaction must then be calculated
through the elements:

Fig. 2.4. An example of a dinitroxide radical
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Fig. 2.5. Scheme of the structure of Cu(hfac)2 (TEMPOL)

where H is defined through Eqs. (2.7) and (2.8). The orbitals Φi and Φj are
expressed as linear combinations of atomic orbitals:

so that the matrix elements of Eq. (2.16) become:

where
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In the literature several methods have been reported to calculate these integrals [2.6
– 8] and the methods applied to several aromatic hydrocarbons [2.9, 10], and other
systems [2.11, 12]. However, for systems characterized by relatively weak
exchange, like the ones in which we are interested, the main difficulty is that of
obtaining reliable molecular orbitals, as discussed in Chap. 1. Therefore, the
method has been relatively seldom used, and empirical methods have been
employed.

Attempts have been made of taking into account the fact that the dipoles cannot
be regarded as point dipoles by introducing two [2.13] (or four in the case of
transition metal ions [2.14]) negative charges delocalized along the lobes of the
p(d) orbitals which formally carry the unpaired electrons. The charge localized
along the lobes of the orbital is 1/2(1/4) the overall charge assumed to be present
in the orbital. The distance of the negative charge from the nucleus has been
assumed to be 35 pm for p and 50 pm for d orbitals, considering that for purely
atomic orbitals the p(d) electron density maximizes at that distance.

Finally, another complication must be mentioned here with regards to the use of
empirical methods. So far it has been assumed that the magnetic dipoles are
essentially localized on two centers. Now let us take into consideration two metal
ions bridged by some intervening ligand: it is apparent that the unpaired electrons,
although mainly localized on the metal ions, will have a finite probability also on
the bridging and the remaining ligands. Although the fraction of electrons
transferred to the ligand may be small, the distance of the ligand from the metal is
much smaller than that of the other metal so that a relevant contribution can also
result. It is worth mentioning here that this is a general problem in magnetic
resonance spectroscopy which has been discussed at length also in the
paramagnetic NMR literature [2.15]. However, this problem is, alas, difficult to
solve. In fact, in order to calculate the ligand contribution to the magnetic spin-spin
interaction fairly accurate functions are needed and, as outlined in the previous
chapter, the era of MO calculations on actual dinuclear species has just started.
Recently Extended Hückel calculations have been applied to fluoro-bridged
copper(II) dimers, but the values did not deviate significantly from those expected
for the point-dipolar approximation [2.16].

2.3  The Exchange Contribution

The isotropic part of the exchange-determined component of JAB,  is mainly
determined by the weak bonding interaction described in the previous chapter, and
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we will not expand on it further. The anisotropic and the antisymmetric parts of 
, on the other hand, are determined by relativistic effects, i.e., by the admixture of
excited states into the ground state by spin-orbit coupling. The rigorous inclusion of
spin-orbit coupling effects in exchange-coupled systems is very difficult, and no
completely rigorous attempt to do this has been made. In the following we will
report the essential lines of a treatment suggested by Kanamori [2.17], which
although simplified, has been used with some success in the interpretation of the
EPR spectra of transition metal compounds.

From the elementary theory of EPR it is well known that excited states can be
admixed into the orbitally non-degenerate ground state by spin-orbit coupling,
yielding g values different from the free electron value ge. Spin-orbit coupling is
more important for transition metal ions than for organic radicals, as shown by the g
values which for the latter are generally quasi-isotropic and close to ge. The
situation is much more complicated in the case of lanthanides and actinides and
will not be considered here.

For transition metal ions and for organic radicals spin-orbit coupling can be
treated as a perturbation. Therefore, in the lowest  state (i denotes the spin
center) the excited states will be admixed through the spin-orbit hamiltonian, Hso,
for which a convenient form is:

where the sum is over all the unpaired electrons of the configuration, li and Si are
the orbital and spin angular momentum operators, respectively, and ξ(ri) is a radial
function. The perturbed functions can be written as:

where the sum is over all the excited states, and  is the energy difference
between the excited and the ground state.

If the exchange interaction is introduced as a perturbation, leaving the relative
hamiltonian Hex unexplicit, the first terms which are relevant to the anisotropic
contribution to  appear in third order and are given by:

where the suffix of Hso indicates that it operates on the coordinates of the electron
centered on A. Of course, analogous terms for B will also be found, and a sum must
be performed on all the excited states.

The final result is that it is possible to rewrite the sum of terms similar to Eq.
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(2.22) by separating the spin and orbital variables according to the effective spin
hamiltonian:

where

where the α sum is over the two centers (α = A, B; β indicates the center different
from α); the i and j sums are over all the excited states; k and 1 are cartesian
components. This matrix is not traceless nor symmetric, when the A and B centers
are different, therefore, it must be reduced according to the procedure outlined in
the previous section. Equation (2.24) has been obtained in the simplifying
assumption that the excited states mixed into the ground state by spin-orbit coupling
belong to the same ground spectral term, so that the relative hamiltonian can be
written as:

 is identical to . It is not a simple exchange
integral, but rather the exchange interaction with an excited state. We will come
back to this below.

Equation (2.24) can take a more appealing form when the symmetry of the system
is at least orthorhombic  and only one excited state is admixed into
the ground state by each La,k component. In this case (2.24) reduces to:

Comparing the expression which gives the g tensors for the individual centers a:

we see that finally Eq. (2.26) can be written as:
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which shows that the elements of the  matrix are of the order of , which
means that for orbitally nondegenerate ground states the matrix elements are very
small. For example for organic radicals, manganese(II), or gadolinium(III) ions, for
which , the elements of the  matrix are practically zero. Equation (2.28)
also shows that the principal axes of the exchange contribution to JAB are parallel
to the principal axes of g, provided that the two g tensors of the A and B centers are
parallel to each other.

In the decomposition of  the scalar component adds to the scalar component
originating from the exchange interaction between the ground, , states. When
the latter is of the order of at least 10° cm−1, then the additional component brought
about by spin-orbit coupling can be safely neglected. However, this cannot be the
case when the ground state exchange interaction is smaller.

A caveat must be clearly stressed at this point, and it pertains to the J(eαgβeαgβ)
parameter. According to its definition it describes the exchange interaction between
the ground, , orbital on center β, with the excited, , orbital on center α.
This interaction can be completely different from the interaction between the
ground states gα and gβ, i.e., it can have different sign and different intensity. This
point can be made clear with one example. Let us take into consideration a
dinuclear copper(II) complex like the one described in Sect. 1.2 and in Fig. 1.4. We
saw that the ground orbital can be described to a satisfactory approximation as xy
and that the exchange interaction between the two magnetic orbitals can be either
ferro- or antiferro-magnetic, depending on the Cu–L–Cu angle. The excited state x2

– y2 is mixed into the ground state through spin-orbit coupling by the z component
of L and . The exchange interaction between these two
orbitals is dominated by the fact that they are orthogonal: according to the
Goodenough-Kanamori rules, this means that the coupling between the two must be
ferromagnetic. Indeed, we already considered this case in Sect. 1.2, for a
copper(II)-oxovanadium (IV) pair. Therefore, when the Cu–L–Cu angle is large
enough, J(xy, xy, xy, xy) is antiferromagnetic and J(x2 – y2, xy, x2 – y2, xy) is
ferromagnetic. It is apparent that any attempt to estimate Jcucu

ex(ZZ) by replacing
the unknown value of J(x2 – y2, xy, x2 –y2, xy) in (2.28) by the value of J(xy, xy, xy,
xy), determined for instance through magnetic susceptibility measurements, is
destined to fail.

Since for orbitally nondegenerate ground states the main contribution of  is to
the zero field splitting tensor, it has been customary to have an order of magnitude
estimate of the D tensor, using for instance the D parameter, according to:

where J is J(gAgBgAgB). From the considerations above it is apparent that this
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estimation can be completely wrong and must be used, faut de mieux, with extreme
circumspection.

Indeed, the EPR spectra of a few copper(II) complexes possessing the geometry
of Fig. 1.4 have been studied [2.18,19]. In all cases the largest zero field splitting
component has been observed to be orthogonal to the coordination plane, in
agreement with a dominant exchange contribution to the zero field splitting, and not
along the copper-copper direction, as would be required by dominant dipolar
interaction. The results are summarized in Fig. 2.6, where the experimental Dzz
values are plotted vs the copper-copper distance. The dotted area corresponds to
the calculated dipolar interaction: it is apparent that all the experimental points are
well above that, even at the largest distances [2.20]. The experimental exchange
contributions can be fitted with an exponential regression [2.18], but it is safer to
use this result as indicative that Dzz decreases on increasing the metal-metal
distance.

A corollary to the use of (2.29) has been that when J is small, the exchange
contribution to D can be neglected, and the experimental value can be safely
assumed to be due to the dipolar component, thus allowing one to determine the
metal-metal distance through the R−3 dependence of D. For instance, it has been
common practice to neglect the exchange contribution to the zero field splitting
when J < 30 cm−1 [2.21]. Although it may work sometimes, there are several
examples in the literature which show how dangerous it can be to rely on it in order
to obtain structural information.
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Fig. 2.6. Experimental Dzz values for a series of dinuclear copper(II) complexes. After [2.20]

Finally, it may be interesting to note that the derivation outlined above to the
anisotropic exchange is not the only one which is possible. Keijzers showed [2.22]
that specializing to pairs, the contribution of excited states appears in second order,
and confirmed that the J(eαgβeαgβ) parameters refer to the exchange interaction
rather than to the exchange integral.

In the original Kanamori treatment beyond the third-order contribution outlined
above, a second-order exchange contribution may also be operative, but this, as we
will show below, is relevant only to the antisymmetric part of the JAB matrix. In
fact, the second-order terms are of the type:
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If we assume that the relevant excited states which can be admixed into the ground
state belong to the same spectroscopic term as the ground state, then (2.30) can be
rewritten as:

where use has been made of the fact that:

for real orbitals. The hamiltonian then takes the form:

By setting:

(2.33) finally becomes:

which yields the second-order contribution of the exchange interactions to the
antisymmetric spin-spin interactions. From (2.35) we learn that  is identical to
zero when the two ions are related by an inversion center, and more generally that
the symmetry rules for  are the same as outlined above for the magnetic
contribution.

These rules have been expressed in a more general way by Bencini and
Gatteschi [2.23]. Two cases can be distinguished: one in which the two
paramagnetic centers are related by a symmetry element and the other where they
are not. In the former the symmetry of the pair is higher than the symmetry of the
individual centers, while in the latter the symmetry of the pair is identical to that of
the single centers. In this case the orientation of d is determined recurring to the
character table of the symmetry point group of the pair. In fact, d may be different
from zero only if some of the individual di’s are different from zero. In order to
have this it is necessary that |ei > and |gi > span the same irreducible representation
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of the symmetry group of the molecule, since the exchange integral must be different
from zero, and that a component of Lα spans the totally symmetric representation of
the group in order to have . Considering, for example, a pair
possessing C2v symmetry, as shown in Fig. 2.7, it is easy to show that d must be
zero, because there is no totally symmetric component of L in C2v symmetry. This
result is also clearly stated in Moriya’s rules [2.3], but with the present approach it
is easier to recognize when d is zero, not by symmetry arguments, but only because
of the actual nature of the ground states. If, for instance, we consider a pair of metal
ions with a z2 ground state in Cn symmetry, the rules of Moriya demand that d is
parallel to the symmetry axis, but since Lz|z2 > = 0, d will actually be zero in this
case.

Fig. 2.7. Schematic view of a dinuclear complex of C2v symmetry. After [2.14]

In the case in which the two centers are related by a symmetry element, it is the
latter which determines the conditions under which d is different from zero. Since
di is an axial vector, a d component different from zero can be found only in the
directions in which the scalar components of the di are not transformed one into the
other by the symmetry elements of the pair.

The second important information contained in (2.34) is that the antisymmetric
exchange contribution is proportional to , rather than to  as the anisotropic
part. Since for orbitally nondegenerate cases, , the antisymmetric
contribution can be fairly large. Since, however, in (2.34) a difference is present,
the relative signs of  and  are also extremely important
in determining the size of  The physical meaning of  is less well
established as compared to  and , discussed in the
previous sections, and at the moment no attempt has been made to relate the former
to exchange pathways, nor are simple rules available to anticipate the extent or
even the sign of this parameter.

Before closing this section it must be recalled that also other perturbations may
be relevant to the general JAB matrix. One is the electric quadrupole-electric
quadrupole interaction, and the other is determined by vibronic effects [2.24].
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The electronic quadrupole interaction is bound to the electrostatic interaction
resulting from the charge distribution on one ion of the pair contributing to the
electric field gradient at the other. It has an R−5 dependence and it increases with
the increase of the orbital contribution to the ground state. Therefore, it proved to
be of some importance in the analysis of the EPR spectra of lanthanide ions.

The vibronic-determined interaction has its origin in the modulation of the
crystal field at one spin center A induced by phonons. In a pair the modulation at
the two centers is correlated in such a way that a phonon emitted, e.g., by A, is
immediately absorbed by center B. This yields a component depending on R−3,
which in the case of nickel(II) Tutton salt has been calculated to be of the same
order as the magnetic dipolar interaction.

2.4  Biquadratic Terms

Beyond the bilinear terms it is possible to introduce also higher-order terms in the
spin hamiltonian, among which biquadratic terms are the most important. Also in
this case there are several different possible origins, but the most relevant are the
higher order intrinsic exchange and the exchange striction effects.

The former enters naturally Anderson’s theory [2.25] when it is extended to the
fourth order in perturbation and physically represents the admixture into the ground
state of excited states corresponding to a double excitation in the superexchange
process. This process can be represented by a spin hamiltonian:

Several attempts to estimate j for different cases have been made and, although
there are large discrepancies in the calculated values, there seems to be a fairly
general agreement that the j/J ratio is of the order of 10−2 at best [2.26]. Although it
is a small effect, it can be observed in the analysis of the EPR spectra of systems
with large S values since the inclusion of (2.36) in the total spin hamiltonian
induces variations in the S manifold splitting pattern.

The other important physical phenomenon which can give rise to a term like
(2.36) is exchange striction [2.27], i.e., the change in the R distance between the
two spin centers due to the exchange stabilization. In general, |J| increases on
decreasing the R distance: therefore, exchange tends to bring the two spins closer
but the process is not indefinite because the restoring forces oppose that. Assuming
a simple Hooke’s law for the restoring force yields a biquadratic form of the
effective hamiltonian identical to (2.36).
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2.5  Justification of the Spin Hamiltonian Formalism

The most elegant justification of the spin hamiltonian formalism has been provided
by Stevens using a second quantization perturbational approach [2.28, 29]. We will
try to provide here a concise illustration of the method, using the mathematical
formalism as little as possible. We provide in Appendix A a short resume of the
foundations of the second quantization formalism in order to provide the readers
who are not familiar with it the possibility of following the line of reasoning,
although at the expenses of some rigour.

Central to Stevens treatment is a reformulation of the perturbation problem for
the case of two interacting ions. Throughout the treatment the orbitals on the two
spin centers are assumed to be orthogonal. The true hamiltonian appropriate to the
system is denoted H, and is not further specified, except to say that it is as complete
as possible. In order to perform a perturbation treatment a suitable unperturbed
hamiltonian H0 is defined, such that

H0 is not, as often assumed, simply the sum of the hamiltonians appropriate to the A
and B species separately, because, if this intuitively simple procedure is followed,
the unusual result is obtained that the perturbed hamiltonian has higher symmetry
than the unperturbed one! One can be easily convinced that this would be the case
considering that the HA + HB hamiltonian is not invariant to the exchange of
electrons between A and B, while the hamiltonian including the perturbation must
necessarily be invariant to electron exchange. Therefore, H0 is chosen according to
different criteria: it must be invariant to electron exchange and it must be suitable
for a perturbation treatment. These two conditions are met by the hamiltonian:

where |n > is an eigenstate of H and the sum extends over all the states. The quantity
Ωn is defined as:

and it is the n-th eigenvalue of H or the mean of the eigenvalues taken over a group
of guasi-degenerate levels. The energy of the unperturbed state does not need to be
known: the only relevant information is that all the |n > functions have the same
energy with the hamiltonian H0. It should be noted that this procedure applies to
symmetric as well as to nonsymmetric A–B species. The perturbation hamiltonian
is:
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Defining the projection operators:

where the sums are over the ground and the excited states specified by the 0 and i
indexes, respectively, it is possible to express the correction to energy up to second
order by an effective hamiltonian defined as:

where  is the energy difference between the ground and the excited manifold:

Using (2.43) it is possible to arrive at the required spin hamiltonian. It is at this
point that second quantized operators are needed. For the reader who is not
familiar with them it can be stated that second quantized operators provide a
formalism for handling Slater determinants, which, as is well known, become a
rather cumbersome tool for providing antisymmetrization when numerous orbitals
are involved.

Let us suppose to have defined the Slater determinant appropriate to a system,
for instance of three electrons, and then we wish to pass to a four-electron system:
formally this can be easily done by defining an operator , called creation
operator, which simply performs what we wish. This means that operating with 
, on the system of three electrons a new Slater determinant, 4 × 4, is obtained which
differs from the previous one due to the addition of one electron in the ασ (α orbital
σ spin part) orbital. Conversely, if we wish to go back to the system of three
electrons we have just to define an annihilation operator, aaασ, which performs
exactly what we want. If we define a vacuum state (a state with no electrons) we
may construct from that all the Slater determinants we want by simply using all the
electron creation operators we need. So, for instance, applying the operator:

on the vacuum state we obtain a 5 × 5 Slater determinant in which the five d
orbitals are singly occupied with spin-up.

Using the appropriate theory, one- and two-electron operators can be expressed
in second quantization as:
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where H1 is a one-electron and H12 is a two-electron operator.
A general hamiltonian for a pair contains both one- and two-electron operators:

some of them involve orbitals localized on the same center, while some involve
orbitals belonging to both centers.

Considering the perturbation hamiltonian (2.43) the first-order contribution,
given by PoH′Po, contains many terms, which, however, keep the number of
electrons on center A and B respectively fixed. This means that if an electron is
annihilated by, e.g., ai, another one must be created at the same site by, e.g. .
Pairs of operators  do not necessarily commute. Among two-electron
operators sets of the type , where k and 1 are localized on B while j and
i are located on A, are present. It is easy to prove that pairs of operators on
different sites necessarily commute. It is this property which can be used for the
comparison of the spin hamiltonian formalism. Indeed, in the latter case the
hamiltonian is expressed as a sum of terms, some of which include couples of spin
operators on the same center, which do not necessarily commute, and couples of
spin operators on different centers, which do necessarily commute. These
commutation rules are analogous to those of angular momentum operators, and
indeed a general expression is available which relates angular momentum and
second quantized operators. This is given in Appendix A. Through this approach it
is possible to substitute to the true hamiltonian, expressed by the second quantized
operators, a spin hamiltonian, expressed through angular momentum operators.
The first-order perturbation hamiltonian is:

This can be split into two components, one collecting the parts of the hamiltonian
which operate on the electrons of the same center, either A and B, and the other
which contains operators which mix the functions of the two centers. In the second
quantized form these components are given by:
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where HL contains all of the ligand field interaction and single ion electron
repulsion which is contained in H0. Aδδ′. and Bδδ′ δ″ δ′″ are defined as matrix
elements of one- and two-electron operators, respectively, according to (2.46) and
(2.47), respectively. The indices α refer to the spin coordinates and α and β to the
orbitals centered on A and B, respectively.

The second-order term in (2.43) can be rewritten as:

Retaining only the terms in which one electron is transferred from A to B or
vice-versa, the spin hamiltonian becomes:

where U has exactly the same meaning as in Anderson’s theory.
Using the relation between angular momentum and second quantized operators

given in Appendix A, Heff reduces to:

Neglecting the scalar terms, and passing from one-electron to all-electron spin
operators, one finally finds:

with

where f is a positive proportionality factor dependent on the electron configuration.
It can be simply expressed as:

and the term in parenthesis in (2.55) can be indicated as Jαββα, i.e., as the exchange
interaction involving the α orbital on A and the β orbital on B. 
corresponds to Anderson’s kinetic exchange and Bαββα corresponds to potential
exchange. Therefore, (2.54) corresponds exactly to the Heisenberg exchange
hamiltonian. No anisotropy is present in (2.53) because in the true hamiltonian we
did not include either spin-orbit or magnetic terms.

53



2.6  Exchange Involving Degenerate States

Up to now we have always assumed that the interacting states are orbitally non
degenerate and have shown that the true hamiltonian can be replaced by an effective
spin hamiltonian. The question at hand now is: how can the case of orbital
degeneracy be addressed. The formalism developed in the previous section now
offers us the possibility to answer this question.

Let us consider first the case when only one of the centers has orbital
degeneracy. Starting from the hamiltonian (2.52), we have to replace the second
quantized operators by angular momentum operators. Let us assume that the orbital
degeneracy of one of the two centers, e.g. A, is associated with a cubic T term,
either T1 or T2. It is a well-known property of these states that they behave as a
spherical angular momentum state characterized by L = 1, multiplied by a
proportionality constant [2.30]. Therefore, the α orbitals can be labeled as L = 1
orbitals, with components x, y, and z. When we substitute second quantized
operators, using the the same formalism which we used for the orbitally
nondegenerate case, beyond spin operators we will need also orbital angular
momentum operators. After some passages which are worked out in Appendix A,
we find that (2.52) becomes:

where .
This hamiltonian operates on a given basis providing in an effective way the

exchange interaction between A and B. The presence of orbital angular momentum
operators in (2.57) makes the hamiltonian anisotropic, even without including
dipolar terms. In other words, the presence of orbital degeneracy in one of the
ground states causes the anisotropic exchange interaction to appear in the effective
hamiltonian in first order, rather than in higher perturbation order as in orbitally
nondegenerate cases.

In order to fully express the energy levels of the pair it is necessary to add also
the low symmetry ligand field components to (2.57), which have been omitted in
(2.52), and the spin-orbit coupling operator. If we assume that the energies of the
Russel-Saunders terms of the two centers are well separated from each other, then a
suitable form of the latter can be:

54



where λA and λB are scalars which depend on the spin center and on the nature of
the ground term. The overall hamiltonian is then applied to the chosen basis and the
matrix can be diagonalized, yielding the required eigenvalues and eigenvectors.

It is instructive to work out a simple case, in order to appreciate the operation of
the effective hamiltonian. Let us consider a pair of coupled low spin iron(III) and
copper(II) [2.31]. This example may be relevant, for instance, to the description of
the electronic structure of the cyanide form of oxidized cytochrome oxidase, in
which an iron(III) porphyrin is coupled to a copper(II) ion in a so far ill-
characterized coordination environment [2.32]. Iron(III) is a d5 ion, which in an
octahedral low spin configuration has a 2T2g ground state. In the actual case the
symmetry is lower than cubic so that the concurrent effect of the ligand field and
spin-orbit coupling yields three Kramers doublets, whose overall splitting is in the
range of 1000–2000 cm−1. The lowest energy doublet can be expressed [2.33] as:

where α, β, and δ are coefficients.
A convenient set of basis functions for the Fe-Cu pair can be obtained by the

direct product of {Φ+, Φ−} with the two spin orbitals of copper {ϕ+, ϕ−} which
have the same orbital composition. Operating on this 4 × 4 basis with the (2.57–58)
hamiltonian yields a matrix which is given in Table 2.2. If we compare the matrix
elements of Table 2.2 with those for the usual spin hamiltonian for two coupled 

 spins we find a relation between the various parameters (Table 2.3). It is
apparent that the spin hamiltonian approach is still possible in this case, but that the
assumption that J is larger than all the other terms is untenable, because all of them
have comparable values in Table 2.3. In the case of orthorhombic symmetry all the
Jij parameters vanish (i, j being cartesian components), and the effective spin
hamiltonian can be rewritten in the simple form [2.34]:

Table 2.2. Hamiltonian matrix for coupled low-spin iron(III)-copper(II) pairs
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Table 2.3. Relations between the bilinear spin hamiltonian and the orbital parameters in low spin iron(III)-
copper(II) pairs

The case of two orbitally degenerate ions has been considered, for instance, for
the characterization of the magnetic properties of .
The two ions are octahedrally coordinated by six halogen ions. Three of the latter
are bridging in such a way that the two octahedra share a face (Fig. 2.8.) The two
titanium(III) ions have a ground 2T2g state in octahedral symmetry, which is split by
the actual trigonal symmetry of the dimer. In this case the ligand field terms in
(2.49) and (2.51) must be included, adding to the total hamiltonian:

where D is defined as the difference:
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Fig. 2.8. Scheme of the structure of  pairs. After [2.35]
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Fig. 2.9. Calculated energy splitting pattern for . After [2.35]

0 and 1 label the components of the t2g orbitals.
In this way the effective hamiltonian becomes:
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where

Finally, the total effective hamiltonian is obtained by adding the spin-orbit
coupling and Zeeman hamiltonians. A pattern of energy levels appropriate to the
titanium(III) dimers is shown in Fig. 2.9. It is apparent that even in this relatively
high symmetry case the number of spin hamiltonian parameters is fairly high.
Further, the splitting of the levels is fairly complicated, so that a large number of
experimental data is required in order to obtain meaningful estimations of the
values of the parameters.

2.7  Exchange in Mixed Valence Species

Mixed valence species are those in which the same element is present in two
different oxidation states. A commonly accepted classification considers three
different types of mixed valence compounds [2.36]. In Class I the two sites are
different and well localized, and the properties are just the sum of the properties of
the individual species. This is clearly the least interesting case. Class III includes
all the species in which the two sites are completely equivalent, and the properties
are at variance to those of the individual species. Among the typical new features
which are observed is the presence of a low frequency electronic transition which
formally corresponds to a charge transfer from one site to the other (intervalence
transition). Finally, Class II corresponds to an intermediate situation between the
two previous ones, with recognizable sites, but with strong interaction between the
two centers.

The number of examples of mixed valence species is now fairly large, but of
interest for the present book are only those in which both the sites are magnetic,
i.e., to those in which the two sites possess unpaired electrons. As examples of
these species we can mention [Ni2(napy)4Br2]+, (napy = 1, 8-naphthyridine),
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involving a NiI – NiiII pair [2.37], [Re2OCl10]3−, involving a ReIV – ReV species
[2.38]; [(bpy)2MnO2Mn(bpy)2]3+, involving MnIII – MnIV [2.39]; reduced 2Fe–2S
ferredoxins [2.40], etc.

The theoretical basis for the description of the electronic properties of mixed
valence binuclear species considers the interplay of vibrational and electronic
degrees of freedom of the systems [2.41]. The reason why vibrational motion must
be taken into account is that, in the limit of equivalent sites, we are in the presence
of two electronically degenerate states, ϕa on site A, ϕb on site B. As is always the
case when electronic degeneracy is present the Born-Oppenheimer approximation
breaks down, because it is only valid on the assumption that the energy difference
of the electronic levels is much larger than the vibrational splitting.

The potential energy surfaces for a dinuclear species which would be symmetric
in the absence of vibronic interaction are depicted in Fig. 2.10 vs a vibrational
coordinate q, which describes the deviation of the two coupled systems from the
symmetric situation. The physical meaning of q should appear clear from Fig. 2.11.
When q = 0, the two sites are identical; when q > 0, site A has longer distances than
site B; while when q < 0, the reverse is true.

The upper curve in Fig. 2.10 denotes that two equivalent minima are present in
the absence of electron coupling, one at q = −f and the other at q = +f. Therefore, f
is a measure of the difference, on the two centers, of the equilibrium displacement
along the totally symmetric coordinate. If electron interaction is included, the two
parabolas split into the curves depicted in Fig. 2.10. Again two minima are present,
separated by the activation energy. Indicating with β the electron interaction
between the two centers, the activation energy is given by:

for |β|/f2 ≤ 1. If Ea is large, a situation which obtains when f2 is large, and 
, the system is strongly localized (Class I). When |β|/f2 increases, we

pass to Class II, and when |β|/f2 ≥ 1 the activation energy goes to zero, and Class III
is obtained.
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Fig. 2.10. Potential energy surface for a mixed valence species: upper no electron interaction; lower with
electron interaction
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Fig. 2.11. Scheme of the geometry of a dinuclear species under the effect of a vibrational coordinate q

When the two oxidation states are magnetic, it can be anticipated that the
Heisenberg hamiltonian must be substantially valid for Class I, unless orbital
degeneracy is present in the two sites, but complications must be foreseen for Class
II and particularly for Class III systems. Let us consider [2.42] a mixed valence
species which can be described by a set of orthogonal molecular orbitals localized
on atoms A and B, respectively. The ground configuration may contain n unpaired
electrons on site A and n−1 on site B. In order to define a spin hamiltonian, we can
follow a procedure similar to that of Sect. 2.5–2.6, using second quantized
operators. A hamiltonian appropriate for the system is the Hubbard hamiltonian
[2.43]:

where the A’s are the one electron and the B’s the repulsion integrals between two
electrons in the same localized orbital. The orbitals α and β are differentiated
according to the center on which they are localized. The A integrals are of
fundamental importance in the treatment. The first n – 1 (α, β = 1 . . . . n – 1)
participates in the exchange phenomenon, while the n-th governs the electron
transfer between orbitals αn and βn. Let us take into consideration a simple example
to understand this point. Suppose we have simply two orbitals on each site (Fig.
2.12). The left-hand side, taken alone, might describe the ground configuration of a
heterodinuclear pair, such as for instance NiII − CuII. In this case the operators
which allow the passage of one electron from αn to βn or vice versa couple the
ground configuration with excited ones. Therefore, the corresponding terms will
appear in Heff defined in (2.52) only in the second-order term because in the first-
order term they are annihilated by the projection operator. In the mixed valence
case, on the other hand, the ground configuration comprises both the left and the
right cases, therefore, the transfer of one electron from α to β, or vice versa, is
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allowed in first order. The effective hamiltonian, with a small change in notation,
takes the form:

where

with n the maximum number of unpaired electrons on one center. The second term
in (2.69) is the usual effective exchange hamiltonian, but now also a one-electron
term is present. The effect of the one-electron term will be that of favoring the high
spin configurations. This can be understood considering that the passage of an
electron from A to B on going from the configuration of Fig. 2.12 (left) to the
configuration of Fig. 2.12 (right) will be the most favorable energetically, because
the passage will occur without any spin flip. Therefore, the possibility of easy
passage of one electron from α to β and vice versa will stabilize the high spin state
on both sites. This phenomenon, peculiar to the mixed valence systems, has been
termed double exchange.

The eigenvalues of the first term in (2.68) are given by:

Fig. 2.12. Ground configuration of a dinuclear species with two half-filled orbitals

This gives a spectrum of levels with the one of maximum multiplicity lying lowest.
When all the terms in (2.68) are taken into account, and also a vibronic

hamiltonian is added, the expression for the energies becomes:

and the activation energy transforms to:

where we have transformed Ann to β to compare directly (2.72) with (2.66). From

63



this comparison we learn that in the case of antiferromagnetic exchange there is a
competition between double exchange, which favors the high spin state and
exchange, and the activation energy is increased compared to the case of no
exchange. In other terms the antiferromagnetic interaction slows down the transfer
rate.

The energy of the minima can be expressed as:

which shows that vibronic coupling adds a negative contribution to the exchange
constant.
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3 Spectra of Pairs

3.1  The Spin Hamiltonian for Interacting Pairs

The spin hamiltonian appropriate to describe the EPR spectra of interacting pairs
can be written as the sum of the spin hamiltonians appropriate for the interpretation
of the EPR spectra of the individual spin centers and the spin hamiltonian
describing the exchange interaction outlined in the previous chapter. A convenient
form of this hamiltonian is:

where gI,  and DI are the Zeeman, hyperfine (superhyperfine), and zero field
splitting tensors of spin center I (the other symbols have been defined in the
previous chapters). The sums over k extend to all the nuclei: a given nucleus k will
therefore appear both in (3.1) and (3.2), although in general the hyperfine
interaction will be described by different tensors.

Other terms describing smaller interactions such as nuclear Zeeman, nuclear
quadrupole, higher order spin interactions have been neglected in (3.1–3).

This form of the spin hamiltonian is derived from the physical consideration that
for the weak exchange interactions described by (3.3), the eigenstates of the
dinuclear system can be approximately described by product kets 

 which form a good basis for the
description of the ground states of A and B, respectively or, perhaps better, by
product kets  where  and  are the eigenvectors of (3.1) and
(3.2), respectively. Usually the  and  kets are expressed as linear
combinations of  and , respectively.

In order to analyze the EPR spectra of interacting pairs using (3.1–3) we must
determine the transition fields to be compared to the experimental ones as a
function of all the spin hamiltonian parameters (g’s, J, D’s, . . .). The direct
procedure requires the calculation of the representation matrix of H in a product
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basis . By direct diagonalization of this matrix we
obtain the eigenvalues and eigenvectors corresponding to a given set of spin
hamiltonian parameters and for a fixed value of the magnetic field from which it is
possible to compute the transition frequencies and intensities. The whole procedure
must then be repeated by varying the spin hamiltonian parameters until a reasonable
agreement is obtained between the computed and observed transition frequencies. It
is apparent that even neglecting hyperfine coupling this procedure requires long
computer time.

Another possible approach is the so-called eigenfield method [3.1–2], which
gives the resonance fields for each setting of the spin hamiltonian parameters as
solutions of a generalized eigenvalue equation. The solution of this equation
requires the diagonalization of an N2 matrix. Since the computer time needed for
matrix diagonalization increases roughly as (N2)3, the eigenfield method becomes
unworkable as N increases. It seems therefore appropriate to look for approximate
solutions which are valid in some limit cases and to reserve the accurate
calculations only for desperate situations in which the approximate methods cannot
be applied. Furthermore, the approximate methods often allow one to obtain
analytical solutions which greatly help experimentalists in rationalizing the EPR
spectra.

The most common approximation is to consider the isotropic exchange as the
leading term in (3.1–3). JAB can actually take any value usually ranging from a few
wave numbers to hundreds of wave numbers both in transition metal complexes or
in radical ion pairs. For normal operating frequencies the Zeeman energy is in the
range 0.3–1.2 cm−1, hyperfine interactions are normally much smaller than this, and
anisotropic exchange for orbitally nondegenerate states hardly exceeds 1 cm−1,
usually being much smaller. The single ion zero field splitting can be fairly large in
couples involving transition metal ions even in the case of orbitally nondegenerate
ground states. For instance, the zero field splitting measured in octahedral high spin
nickel(II) or tetrahedral high spin cobalt(II) complexes is in the range 100−101 cm−1

[3.3].
In the following we will solve first the hamiltonian (3.1–3) assuming that JAB is

larger than all the other terms in the spin hamiltonian (strong exchange limit). Later
we will show how to extend the formalism in the case of small JAB values (weak
exchange limit) and in the last section of this chapter we will present solutions in
some limiting cases in which anisotropic interactions, including single ion zero
field splitting, are considerably larger than the other terms in the spin hamiltonian.

3.2  Spin Levels in the Strong Exchange Limit
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In the strong exchange limit we consider the effect of the other operators in (3.1–3)
as a perturbation on the eigenvalues of JABSA · SB. Since the z component, Sz, of
the total spin operator S = SA + SB and S2 = S · S commute with JABSA · SB, the
eigenstates of S2, with eigenvalues S(S + 1), and of Sz, with eigenvalues – S ≤ M ≤
S, are also eigenstates of JABSA · SB. The total spin quantum numbers, S, which
follow the vector addition relation

and the M values can be used to label the energy levels of JABSA · SB. The
isotropic exchange interaction removes the degeneracy of the eigenvalues of S2 and
originates a number of states whose energies are given by

each state being (2S+ 1)-fold degenerate. The energy differences between adjacent
states are:

The energy levels arising from the exchange interaction between two different
pairs, one with SA = SB = 1/2 and the other with SA = SB = 5/2, are shown in Fig.
3.1.

Sz and S2 do not form a complete set of commuting observables and  and 
must be added to complete the set. Any eigenvalue of JABSA · SB should thus be
written as . In the following we will generally omit the SA and SB
labels when there is no ambiguity on the spin states SA and SB. The  states
can be easily built in the product space according to
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Fig. 3.1. Energy levels arising from the exchange interaction between two spins 1/2 (left) and 5/2 (right). The
levels are labeled according to the total spin quantum number S

where  are the vector coupling or Clebsch–Gordan
coefficients relative to the coupling of the S1 and S2 vector operators. They are
defined in Appendix B.

In the strong isotropic exchange limit the energy separation between adjacent
levels given by (3.6) will be assumed to be much larger than hν and no direct
transition between states of different S will be observable. The EPR spectra are
just the superposition of the spectra observed for the different total spin states
which are thermally populated at the temperature of the experiment. The spectra can
thus be phenomenologically described by one or more S spin hamiltonians of the
form

instead of (3.1–3). It is now our purpose to show how gs, Ds, and  can be
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expressed as linear combinations of the individual spin centers and exchange spin
hamiltonian parameters appearing in (3.1–3). The reader who is not interested in
the derivation can skip the next pages and pass directly to the results which are
given in (3.20–23).

It is convenient to transform the spin hamiltonian (3.1–3) by substituting

for SA and SB in (3.1–3). This procedure [3.4] gives:

where (3.11) and (3.12) are the Zeeman, individual spin center zero field splitting
and hyperfine terms, (3.13) contains the isotropic and anisotropic terms, and (3.14)
contains the antisymmetric terms. In (3.11) g± = gA±gB and D± = DA±DB. In the
following we will not explicitly consider the antisymmetric term whose effect on
the energy levels will be discussed at the end of the section.

In order to set up the matrix representation of (3.11–14) on the  basis
we note that all the operators containing S have nonzero matrix elements only
within an S manifold, or , where f(S)
is any operator containing S, while matrix elements of operators containing V obey
the selection rules ∆S = 0,±1,±2. Instead of using the cartesian components, Tij(i, j
= x, y, z), of the various tensors and tensor operators appearing in (3.11–14), we
will adopt in the following their irreducible tensor components, Tkq(k = 0, 1, 2; – k
≤ q ≤ k), i.e., those components which span the irreducible representations of the
real orthogonal rotation group SO(3) [3.5]. Tensors (tensor operators) expressed in
this form are called irreducible tensors (tensor operators) and their components are
easily expressed as linear combinations of cartesian components as shown in Table
3.1 for zero-, first-, and second-rank tensors (tensor operators). Since irreducible
tensor operators can be defined on different operator variables, it is necessary to
specify the type of variable, and this is done by including it in parentheses.

The irreducible tensor operators have the following properties:
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1.  Commutation relationships

2.  Wigner–Eckart theorem [3.6]

where Tkq(O) is the q-th component of the k-th rank tensor operator built up from
the operator variable O. The integral  appearing in (3.17) is called
the reduced matrix element and it is independent of M, M′, and q. The last term in
(3.17) is called 3j symbol and it is defined in Appendix B. Equation (3.17) greatly
reduces the time needed for evaluating matrix elements of irreducible tensors once
the reduced matrix elements are known for any value of S and S′. Reduced matrix
elements relevant to the calculation of the representation matrix of (3.11–13) are
given in Appendix B.

Table 3.1. Cartesian representation of irreducible tensor operators up to second ranka

aO is a scalar operator; O (O′, O″) are vector operators with cartesian components Ox, Oy, oz.
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By applying (3.17) to calculate the matrix elements  and 
 and taking the ratio of the two expressions we obtain the

fundamental result:

where the δ symbol appears since the denominator vanishes for S ≠ S′. Equation
(3.18) allows the evaluation of the matrix elements of irreducible tensor operators
built up from the operator variable O from the knowledge of the matrix elements of
the corresponding operators built up with S, which are easy to calculate, and of
some reduced matrix element. Applying (3.18) to evaluate the matrix elements of
the irreducible tensor operators containing V as operator variable in (3.11–13) we
can substitute S to V obtaining the following spin hamiltonian valid within each S
spin manifold:

where the c, c+, and c− coefficients depend only on S, SA, and SB and are defined in
Table 3.2.

Comparing (3.19) with (3.8) we obtain the following relationships between spin
hamiltonian parameters:

when referring to the metal hyperfine coupling k = A, B, only one term is often
retained in (3.22) on the assumption that the coupling of nucleus A to the electrons
of B is small and vice versa. When these terms, , , are included they are
called supertransferred hyperfine coupling.

Table 3.2. Reduced matrix elements relevant to the calculation of the spin hamiltonian matrix within an S
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manifold

aThe coefficients are zero for S = 0. When the denominator is zero, the coefficients must be taken as zero.

The coefficients appearing in (3.20–23) are easily evaluated for any two-spin
system using Table 3.2. As an example we report in Table 3.3 the coefficients
computed for two equivalent spins SA = SB ranging from 1/2 to 5/2, and for two
inequivalent spins SA = 1/2 and SB ranging from 1/2 to 5/2. The effect of the zero
field splitting Ds on the energy levels of a triplet state arising from the exchange
interaction between two 1/2 spins is shown in Fig. 3.2.

Equations (3.20–23) are relationships between tensors and are always valid
even when the tensors are neither diagonal nor collinear, but care must be taken to
refer all the tensors to the same reference system. The symmetry of the system can
impose some relationships between the tensors appearing in 3.20–23. The presence
of an inversion center in the molecule, for example, causes the second rank tensors
on A to be equal to the second-rank tensors on B and to have parallel principal
axes. This means that also the principal axes system of the coupled tensors is
collinear to that of A and B. In this case the T− tensors in 3.11–13 are zero and the
T+ tensors are twice the tensors of the individual spins.

The c and d coefficients in 3.20–23 are not linearly independent but c1 +c2 = 1
and d1 +d2 = c+. The first of these relations shows that when the spin centers are
equal, the g tensor of the pair will be identical to the tensors of the individual
spins, as already noted from symmetry arguments. However, if the two individual g
tensors are different, the gs tensor may be remarkably different from each of them. It
must be recalled here that “different” means also two otherwise identical tensors,
but differently oriented. For the highest multiplicity spin state S = SA + SB we have
also c1/c2 = SA/SB and, since in this spin state SA, SB, and S are simply
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proportional to the number of electrons on A and B, nA and nB, respectively, we
obtain the simple relationship:

Table 3.3. Numerical values of the coefficients in Eqs. (3.20-23) for selected dinuclear systemsa

aSymmetric dinuclear couples with SA = SB from 1/2 to 5/2 and heterodinuclear couples with SA = 1/2 and SB
from 1 to 5/2.
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Fig. 3.2. The effect of the zero field splitting on a triplet state. The levels are labeled according to their M value.
The M = ± 1 levels are not pure levels since they are admixed by rhombic components. The energies have been
computed for E/D = 0.07. Left: D > 0; right: D < 0

which shows that c1 and c2 for the highest spin multiplicity state of the couple are
always smaller than 1.

Since c1 and c2 apply also to the hyperfine tensors, it is apparent that in the
highest multiplicity state of the couple the hyperfine splitting will be scaled from
the value observed in a corresponding mononuclear species, or, perhaps better, in a
dinuclear species in which one of the two paramagnetic centers has been
substituted by a diamagnetic one.

In the preceding discussion we have neglected the antisymmetric terms in (3.14).
This term can be written as:

where

The matrix elements of (3.26) are reported in Table 3.4 as a function of reduced
matrix elements of T1q(S · V) and T1q(V). In Table 3.5 we show the values of the
reduced matrix elements for SA = 1/2 and SB ranging from 1/2 to 5/2.

In the strong exchange limit the effect of dAB on the energy levels of an S spin
manifold can be understood by considering that the general bilinear exchange
interaction SA · JAB · SB is represented by a positive definite dyadic JAB which
can be decomposed by polar decomposition into a product of a real symmetric, 
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, and a real orthogonal R matrix and the interaction term becomes
[3.7]:

Table 3.4 Matrix elements of (3.25)a

atx ty, and tz are defined in Eq. (3.26). The 3j symbols are indicated with the shorthand notation: 

.

General expressions for the reduced matrix elements can be found in Appendix B.

Table 3.5. The reduced matrix elements of T1(V) and T1 (S · V) between the S states obtained from SA = 1/2
and SB from 1/2 to 5/2

where . Equation (3.27) shows that in the strong exchange limit the
effect of the antisymmetric term on the energy levels of an S spin manifold can be
represented by a symmetric tensor which, upon making it traceless, gives an
additive contribution to the zero field splitting. A closed formula has been worked
out for the case of two spins SA = 1/2, SB any value, and parallel gA and gB
tensors. In these systems it was found that the antisymmetric coupling determines in
the S manifolds an additional axial zero field splitting with the unique axis parallel
to dAB. The D value was found to be:
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It must be remembered now that this is the effect on the energy levels only. In
fact, since (3.25) admixes states with  it affects the transition intensities
of the EPR spectra as well as the angular variation of the line widths. In general, it
will be difficult to recognize these effects on the EPR spectra and then it will be
possible to measure the antisymmetric dAB vector from (3.28) only if we can safely
estimate all the other contributions to the zero field splitting both in value and in
space orientation. The symmetry of the molecule imposes severe conditions on the
antisymmetric exchange term as already elucidated in Chap. 2 and can be of help in
solving this problem.

3.3  Spectra of Pairs in the Strong Exchange Limit

Spectra of pairs in the strong exchange limit are generally formed by one or more
spectra arising by the spin multiplets which are thermally populated at the
temperature of the experiment [3.8]. The theory which is therefore needed to
interpret the spectra of pairs in the strong exchange limit is essentially the theory
used to interpret the EPR spectra of S ≥ l/2 spin systems [3.3]. It must be mentioned
that often spin states as rare as S = 3 or higher can arise from the exchange
interaction, which are not commonly observed in simple systems.

Some further complications must, however, be expected since: (1) the spectra at
a given temperature can be a superposition of spectra arising from different
multiplets; (2) the g and D tensors will in general be diagonal in different reference
frames. The first point generally requires that the EPR spectra are recorded at
different temperatures, in order to individuate which signal belongs to which spin
state. The total intensity of the signals arising from a given multiplet is temperature-
dependent according to the Boltzmann law:

where Z is the partition function

and k is the Boltzmann constant. The temperature dependence of Is for the states
arising from the coupling between two SA = SB = 5/2 spins is shown in Fig. 3.3. By
measuring the dependence of the signal intensity of the EPR spectra it is in
principle possible to determine the relative energies of the thermally populated
levels. This procedure has been used several times in the literature, but the results
are generally less accurate than those obtained from the measurement of the
temperature variation of the bulk magnetic susceptibility, mainly due to
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inaccuracies in the determination of the intensity of the signals. In fact, this must be
obtained by a double numerical integration of the usual derivative output of the
spectrometer, extended to the entire range of the signal, especially on the wings.
When several different multiplets are populated it may easily occur that more
signals overlap, thus making the measurement inaccurate.

Point (2) above is also responsible for several complications when analyzing the
EPR spectra of pairs. In fact, when g and D are not collinear, polycrystalline
powder or glassy matrix spectra do not generally allow the determination of the
principal values and single crystal measurements are needed. The following
example should clarify the possible origin of the misalignment between g and D.

The copper(II) ion is often four-coordinated in a square planar environment
(additional ligands may also be present, but at longer distances than the equatorial
ones). Three fairly common ways of coupling two square planar copper ions in a
pair are shown in Fig. 3.4. Figure 3.4a shows the geometry of the copper acetate
hydrate dimer.

Fig. 3.3. The relative intensities of the EPR transitions for a pair of Si = Sj = 5/2 spins computed with Eq. (3.29)
plotted against the reduced temperature kT/JAB. Transitions within different total spin manifolds S = , 2, 3, 4, 5
are labeled [3.8]

78



Fig. 3.4. Three common geometries found in copper(II) dimers formed by square planar moieties

The isotropic exchange interaction in these systems couples the two S = 1/2
spins to give a singlet and a triplet state. The threefold degeneracy of the triplet is
lifted by zero field splitting (Fig. 3.2). The zero field splitting tensor, D1, according
to (3.21) is determined by the DCuCu tensor, which in Chap. 2 was shown to be due
to anisotropic exchange and dipolar contributions. In centrosymmetric systems the
g1 tensor is parallel to the g tensors of the individual moieties, which in the present
case have their z axes orthogonal to the coordination planes with the x and y axes
roughly parallel to the bond directions. The z direction is shown in Fig. 3.4 for the
three geometries.

The largest component of the dipolar zero field splitting tensor is expected to be
parallel to the copper-copper direction, r, while the z principal direction of the
anisotropic exchange tensor is generally found parallel to the z axis of the g tensor
(see Chap. 2). It is apparent that only in geometries like in (a) the g and D tensors
can be roughly parallel to each other, while in (b) and (c), if dipolar and exchange
contributions are comparable in magnitude, they must have different principal axes
since r and z are misaligned. In particular, in geometries like (c) the principal axes
of g1 and D1 can be oriented as shown in Fig. 3.5. The D1Z axis is determined by
the anisotropic exchange, and the D1X axis is determined by the dipolar interaction.
In Fig. 3.5 we show also the principal axes system of g1. It is apparent that the two
tensors have the z axis in common, but they have x and y axes rotated by
approximately 45°.

A detailed analysis of the spectra which can occur for the various spin states is
not in order here, since it would require a whole text of its own. However, the
interested reader can refer to general references [3.3].

It is now relevant to provide some examples of applications of Eqs. 3.20–23
showing their experimental validity and their limits. In order to apply these
relationships one should know with some accuracy the single ion spin hamiltonian
parameters since when the spectra of a pair are observed it is not possible to
decompose experimentally the observed spin hamiltonian parameters into a sum of
different contributions unless some of them are independently known. In a discrete
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dinuclear unit one can often substitute one of the two paramagnetic centers with a
diamagnetic one, obtaining an isomorphous complex in which only one
paramagnetic species is present. This procedure gives the possibility of measuring
the spin hamiltonian parameters of at least one of the ions forming the dinuclear
species. These can be directly compared to the experimental spin hamiltonian
parameters in homodinuclear centrosymmetric couples according to 3.20–23. In
these systems it is also possible to measure the DAB tensor. In heterodinuclear
species, on the other hand, in order to perform a direct check of 3.20–23 it must be
possible to substitute both the paramagnetic centers independently and to evaluate
both the single-ion spin hamiltonian parameters independently. If this is not
possible, but, for instance, only one of the paramagnetic centers can be easily
substituted, then 3.20–23 can be used to calculate the parameters for the
paramagnetic center. Comparing these values with those observed in similar
mononuclear species, it is possible to check the limit of validity of the above
equations.

Fig. 3.5. Orientation of the principal axes of the D1 (X,Y,Z) and g1 (x,y,z) tensors in square planar copper(II)
dimers

A beautiful example where Eqs. 3.20–23 have been experimentally verified is
provided by the pair spectra observed in the host lattice of di-μ-pyridine-N-oxide
bis[dichloro aquo copper(II)], [Cu(pyO)Cl2(H2O)]2 [3.9]. The structure of
[Cu(pyO)Cl2(H2O)]2 is illustrated in Fig. 3.6.

The two copper(II) ions are strongly antiferromagnetically coupled: the singlet is
the ground state with the triplet level lying  500 cm−1 above. The EPR spectra of
the triplet level can be observed at room temperature, and disappear rapidly on
cooling according to (3.29) [3.9–10]. They have been interpreted using 

, , , |D| =0.154 cm−1, and E/D = –0.19. The g
tensor has quasi-axial symmetry with the z axis orthogonal to the C12O2 molecular
plane and the x and y axes roughly parallel to the in-plane copper-pyridine-N-oxide
bonds. If the sample is doped with a little zinc(II) (d10 configuration, diamagnetic)
in the lattice will be present Cu–Cu, Cu–Zn, and Zn–Zn pairs. At low temperature
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all the Cu–Cu pairs must be in the ground singlet state, therefore, an EPR spectrum
is observed at a temperature below 77 K, arising from a doublet state due to
copper(II)-zinc(II) couples. The measured g tensor is identical within experimental
error with the tensor observed in the copper(II)-copper(II) couple in agreement
with (3.20). Unfortunately, no hyperfine coupling is resolved for the latter, so it is
not possible to test in this way the validity of (3.21).

Copper and manganese hyperfine is, however, resolved in the EPR spectra of
manganese(II) doped [Cu(pyO)Cl2(H2O)]2 [3.9a, 3.10c]. Manganese(II) is a d5 ion,
with a ground SMn = 5/2 state, which can be coupled to SCu = 1/2 to give S = 2,3.
The spectra have been observed at 77 K and have been interpreted using a S = 2
spin hamiltonian. A typical single crystal spectrum is shown in Fig. 3.7. Since no
signal attributable to the S = 3 spin state was observed in the whole temperature
range, it was estimated from (3.29) that J ≥ 250 cm−1. The four main lines in Fig.
3.7 correspond to the – 2→ – 1, –1→0, 0→1, and 1→2 allowed ∆MS = ± 1
transitions within the ground S = 2 manifold. Each fine structure line is actually
split into 24 lines, with the structure corresponding to a sextet of quartets. This
structure was attributed to the coupling of the unpaired electrons with the 55Mn(IMn

= 5/2) and 63, 65Cu(ICu = 3/2) nuclei. The observed g tensor is parallel to that
observed in the Cu–Zn couple with principal values: , , 

. Since manganese(II) is a 6S ion, the gMn tensor can be safely assumed
to be isotropic and equal to 2.0. Using (3.20), with c1 = 7/6 and c2 = −1/6, and
taking for gCu the tensor obtained from the Cu–Zn couple we can calculate 

 and  in excellent agreement with the experimental
values. It must be remarked that although neither ion has g values smaller than 2, the
pair does. This is simply the result of the antiferromagnetic alignment of the two
spins in the ground S = 2 state. The observed copper hyperfine splitting is 23 ×
10−4 cm−1, measured along the z axis, which corresponds perfectly to 1/6 the
hyperfine of the individual copper ion,  observed in
the Cu–Zn pair spectra. The manganese(II) hyperfine coupling cannot be directly
tested since no Mn–Zn couple was reported. However, the experimental value 

 requires by (3.22)  in
nice agreement with the values observed in MnO2Cl2 complexes [3.3].
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Fig. 3.6. The structure of [Cu(pyO)Cl2(H2O)]2

The previous examples show how well relations 3.20–23 work in interpreting
the EPR spectra of couples in the strong exchange limit. It must be recalled here
that strong exchange means that the isotropic exchange interaction is much larger
than all the other interactions in 3.1–3. We will show in Sect. 3.6 that in the
presence of single ion anisotropy this approximation can lose its validity even for
large JAB values depending essentially on the JAB/DA ratio. The validity of Eqs.
3.20–23 must always be checked experimentally in each case before using them.

Fig. 3.7. Single crystal EPR spectrum of manganese(II) doped [Cu(pyO)Cl2(H2O)]2 at X-band frequency and
77 K. The static magnetic field is parallel to the x axis of the zero field splitting tensor. After [3.9a]

Equation (3.21), relating the measured zero field splitting tensor of the couple to
single ion and anisotropic exchange contributions, is certainly the most difficult
relationship to verify experimentally since a large number of physical effects, for
example, antisymmetric exchange and magnetic dipolar interactions, are
represented by a bilinear spin form and contribute to the zero field splitting

82



observed by EPR spectroscopy.
One of the best examples in which Eq. (3.21) seems to hold is the chromium(III)

dimer tris (μ-hydroxo)bis(1,4,7-trimethyl-1,4,7-triazacyclononane chromium(III))
whose structure [3.12] is represented in Fig. 3.8. The chromium(III) centers, SCr =
3/2, are antiferromagnetically coupled with JCrCr = 64 cm−1 leaving S = 0 as the
ground spin state [3.13]. The zero field splitting of the excited S = 1,2, and 3 spin
states has been measured from the EPR spectra to be |D1| = 2.28cm−1, |D2| = 0.08
cm−1, and |D3| = 0.23 cm−1, respectively [3.14]. Application of (3.21) yields:

Equation (3.32) has a particularly fortunate form because it depends on one
parameter only, DCrCr. Therefore, the measured D2 splitting can be used to estimate
the exchange contribution directly yielding |DCrCr| = 0.16 cm−1. One of the main
limitations in using (3.21) to evaluate the contributions to the zero field splitting of
pairs is now apparent: we do not know experimentally the sign of the zero field
splitting parameter. In the present case by assuming that D1 and D2 are positive and
D3 negative and using (3.31) and (3.32) together we obtain DCrCr = 0.16 cm−1 and
DCr = −0.84 cm−1 yielding D3 = −0.29 cm−1, in nice agreement with the
experimental data. The calculated value of DCr is comparable to the zero field
splitting observed in other trigonally distorted complexes such as Cr(acac)3 (|D| =
0.59 cm−l) [3.15] showing that 3.31–33 can be used to interpret the EPR spectra of
this complex.
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Fig. 3.8. ORTEP view of tris(μ-hydroxo)bis(1,4,7-trimethyl-1,4,7-triazacyclononane chromium(III) [3.12]

A situation in which the knowledge of the sign of the zero field splitting tensor
can be irrelevant to the analysis of the zero field splitting can be experimentally
found in the copper(II)-manganese(II) couples when EPR spectra from both the S =
2 and 3 spin states are observed. These complexes can thus in principle provide
good systems for the experimental verification of (3.21). In fact, by applying (3.21)
to these systems, we get:

and adding together (3.34) and (3.35) gives

irrespective of the relative signs of the components of D2 and D3. Equation (3.36)
should be easy to check by directly measuring DMn in a Zn–Mn couple or by
comparing the measured value with literature reports. Equation (3.36) was used to
interpret the measured zero field splitting in Cu(prp)2enMn(hfa)2, where (prp)2en is
the Schiff base formed by 2-hydroxypropiophenone and ethylenediamine [3.16].
The structure of Cu(prp)2enMn(hfa)2 is illustrated in Fig. 3.9. The coupling
between Cu(II) and Mn(II) is antiferromagnetic with JCuMn = 26 cm−1. The
measured zero field splitting parameters are |D2| = 0.034(4) cm−1, E2/D2 = 0.28(3),
and |D3| = 0.047(5) cm−1, E3/D3 = −0.23(2) for the S = 2 and S = 3 states,
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respectively. Equation (3.36) gives |DMn| = 0.040 cm−1 which is of the correct
order of magnitude, as we learn from the comparison with the values reported in
the literature. An independent check was also tried by measuring the EPR spectra
of Ni(prp)2enMn(hfa)2 which is isomorphous with Cu(prp)2enMn(hfa)2. The
nickel(II) (d8 electronic configuration) is in a square planar environment and is
diamagnetic. Therefore, the zero field splitting measured in the EPR spectra is due
to the [Mn(hfa)2]2+ moiety. The measured zero field splitting parameter was |DMn|
=0.049(5) cm−1 which is 20% larger than the value computed through (3.36). An
obvious explanation for this might be that the zero field splitting in Ni–Mn is not the
same as that in Cu–Mn due to some small structural differences. It is therefore
apparent that an exact experimental verification of (3.21) can be extremely difficult,
but on the other hand the difference between experimental and computed results is
only 20% which can after all be considered as a reasonable agreement between
theoretical predictions and experimental data.

Fig. 3.9. The structure of Cu(prp)2enMn(hfa)2

A further complication in the application of (3.20–23) can be brought about by
exchange striction effects defined in Sect. 2.4. A discussion of this point will be
given in Sect. 9.1.

The antisymmetric term (3.25) has been suggested [3.7] to contribute to the EPR
spectra of manganese(II) doped [Cu(pyO)Cl2(H2O)]2 which have already been
described above. The measured zero field splitting of the S = 2 is |D2| = 0.051 cm
−1, E2/D2 = −0.26 with the direction of maximum zero field splitting, D2z orthogonal
to the  axis, which is parallel to the Cu-O(axial) bond (Fig. 3.10). In the pure
copper complex the direction of maximum zero field splitting D1z makes 26° with
the  direction and D1y is near the Cu–Cu direction. Since the Cu–Cu complex is
centrosymmetric the only contributions to D1 come from anisotropic exchange and
dipolar interactions and the observed misalignment between g1 and D1 can be
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rationalized by a nondiagonal DCuCu tensor due to the low symmetry of the
complex. It is apparent that the same explanation does not hold for the Cu–Mn
couple. In fact, purely anisotropic exchange interactions would require D2z parallel
to , or slightly misaligned from it like in the Cu–Cu couple, while purely
dipolar interactions would put D2z parallel to the Cu–Mn direction. Both of these
interactions cause the D2z to be nearly orthogonal to the observed one. Furthermore,
since the exchange contributions to DAB are proportional to  and (see
Chap. 2), they are expected to be smaller in the Cu–Mn than in the Cu–Cu pair
because of gMn ge [3.3]. It must be noted that the Cu–Mn couple is
noncentrosymmetric and antisymmetric exchange interactions can be operative.
Since the overall symmetry of the complex is not far from Cs, the σ plane including
the copper(II) and manganese(II) ions and the oxygens of the water molecules, we
expect a dCuMn vector perpendicular to σ. The gMn tensor can be assumed as
isotropic so that gCu and gMn are collinear and Eq. (3.28), which expresses the
effect of d on the S = 2 state, can be applied. Using (3.21), (3.28) and the values of
the coefficients reported in Table 3.3 we can decompose the D2 tensor according to
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Fig. 3.10. Relative orientation of the D2 and g2 tensors in manganese(II) doped [Cu(pyO) Cl2(H2O)]2

where Da is an axial tensor with the largest component parallel to dCuMn whose
magnitude is given by (3.28). Equation (3.37) shows that the observed D2z
direction, which is expected to be parallel to Daz, can be explained assuming a
sizeable contribution of Da. Unfortunately, we cannot use (3.37) to measure Da from
the EPR spectra since we cannot independently determine DMn and DCuMn. The
order of magnitude of Da can, however, be estimated through the following
assumptions: an axial DMn tensor with DMn = 0.05 cm−1, according to the literature
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reports; the exchange contribution to DCuMn taken to be the same as in the Cu–Cu
couple, which overestimates it; computing the dipolar contribution to DCuMn using
the Cu–Cu direction seen in the crystal structure. With the above assumptions. Eq.
(3.37) gives Da = –0.03 cm−1, Ea/Da = 0, using for Da the sign anticipated from Eq.
(3.28), which corresponds to ||dCuMn|2/JcuMn| = 0.48 cm−1.

3.4  Spin Levels in the Weak Exchange Limit

When the assumptions made in Sect 3.2 are no longer valid, the eigenvectors of S2

and Sz do not give a good description of the spin states and correct eigenvalues and
eigenvectors must be obtained by diagonalization of the full hamiltonian matrix.
The formalism developed in the previous sections can, however, be retained. It is
sufficient to add to the spin hamiltonian (3.19), which has no nonzero matrix
elements within states with different S, the additional terms:

In (3.38–39) we have neglected the antisymmetric term (3.25) for the sake of
simplicity. By application of the Wigner–Eckart theorem (3.17) one can easily
recognize the S states which are connected by (3.38–39). In fact, due to the
triangular relationships of the 3j symbols, the first-rank irreducible tensor operators
in (3.38) and the second-rank irreducible tensor operators in (3.39) can connect
only states with . For couples in which SA = SB a further
restriction applies to the matrix elements of the operator S · D _ · V which are
nonzero only when . It must be also remembered that when an inversion
center connects A and B, D _ = 0. General expressions for the matrix elements of
(3.38–39) are reported in Appendix B. Some matrix elements of operators
containing V have been analytically expressed as a function of SA, SB, S, and S′
[3.4] and are reported in Table 3.6.

Perturbation expressions [3.17] have been derived for the eigenvalues and the
eigenvectors of a two S = 1/2 spin system when the Zeeman effect is dominant over
the anisotropic terms appearing in (3.19, 3.38–39). This situation has been
experimentally encountered in a wide variety of spin-labeled transition metal
complexes containing copper(II), silver(II), and oxovanadium(IV), in titanium(III),
copper(II), and oxovanadium(IV) dinuclear complexes in which the metal centers
are more than 8 Å apart, as well as in many systems of biological interest like B12-
dependent enzyme reactions. In these systems, moreover, anisotropic exchange
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interactions are usually assumed as zero and zero field splitting effects have been
generally attributed only to dipolar interactions and used to estimate the distance
between the spin centers.

Table 3.6. Analytical expression of matrix elements of operators containing V for S′ ≠ Sa

aThe operators are expressed in their cartesian components. If a matrix element becomes indeterminate when S
= 0, the matrix element is zero.

A brief discussion and examples of these systems will be given in Sect. 3.5. We
will report here relevant perturbation formulas for the calculation of the energy
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levels and EPR spectra of a couple of dissimilar centers SA = 1/2 and SB = 1/2. A
complete treatment of the perturbation procedure can be found in Ref. [3.17a].

The hamiltonian we consider here has the form

In the single ion terms HA and HB we have considered only the hyperfine
coupling with one nucleus. The HAB term has been assumed to contain only
isotropic exchange and anisotropic effects. These latter effects have been generally
considered to be due to the magnetic dipolar interaction between the SA and SB
spins. In order to work out a perturbation procedure all the spin hamiltonians must
be referred to the same axes. It is generally used to refer (3.40–43) to the gA
principal axes system, (xA, yA, zA). The general orientation of spin B with respect
to spin A is shown in Fig. 3.11. In addition to the definition of the A – B distance,
rAB, and to the polar angles, ε and η, of the rAB vector one needs to specify the
three Euler angles, α, β, and γ, defining the orientation of the gB principal axes, (xB,
yB, zB), with respect to (xA, yA, zA). In general, the gB tensor will not be diagonal
in the (xA, yA, zA) reference system. Explicit expressions for the dipolar part of the
DAB term , have been given as a function of the principal values of gA and gB,
the spin-spin distance rAB, and the angular variables ε, η, α, β, γ. A simple
expression was derived by Pilbrow using the principal values of the g tensors and
the direction cosines of (xB, yB, zB) and rAB with respect to the (xA, yA, zA) axes:
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Fig. 3.11. General orientation of reference frame centered on spin center B with respect to the reference frame
on spin center A. The orientation of the z axis of the dipolar tensor is specified by the angles ε and η

In (3.44) λ ∈ {xB, yB, zB}, μ, i, j ∈ {xA, yA, zA} and lij are the cosines of the
angles between the i and j directions. The hamiltonian (3.40–43) can be written in
the diagonal Zeeman representation using standard techniques as:

where electron spin axes are denoted by′ and nuclear spin axes by″. The various
quantities appearing in (3.45) are defined as follows:
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where lx, ly, and lz are the direction cosines of B with respect to the xi, yi, and zi
axes. It must be stressed at this point that when ions A and B are dissimilar, the
Zeeman quantization axes are in general different and can also be largely
misaligned. The interaction term HAB in the Zeeman representation becomes:

with

Equation (3.56) reduces to an isotropic interaction only for similar paramagnetic
centers where 1μλ = δμλ. In the general case the isotropic exchange interaction
cannot be separated by the anisotropic interaction.

For centrosymmetric pairs {xA, yA, zA} ≡ {xB, yB, zB} and (3.54) becomes:

Perturbation theory is conveniently carried out in the coupled representation
defined by:

where the kets on the right are product kets labeled as  and
the other symbols are defined as:
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The hamiltonian (3.45) is not diagonal in the basis (3.58–59). Its representation
matrix is shown in Table 3.7 where we have used the following definitions:

Table 3.7. Spin hamiltonian matrix for two interacting  spins in the coupled representationa

aThe basis functions and the other symbols are defined in the text.

S4 = −(Dxy + Dyx)/4;
S5 = (−UDxz + VDyz − bDzx + ((Uτ4 − Vτ5)mA + bτ4mB)/2;
S6 = (VDxz + UDyz + bDzy)/4 − ((Vτ4 + Uτ5)mA + bτ5mB)/2;
S7 = (WDzx + XDzy + dDxz)/4 + ((Wτ4 + Xτ5)mB + dτ4mA)/2;
S8 = (XDzx − WDzy − dDyz)/4 + ((− Wτ5 + Xτ4)mB − dτ5mA)/2;
S9 = (− WDxz + XDyz − dDzx)/4 + ((Wτ4 − Xτ5)mA + dτ4mB)/2;
S10 = (− XDxz − WDyz − dDzy)/4 + ((Wτ5 + Xτ4)mA + dτ5mB)/2;

Perturbation solutions can be obtained to the second order in energy yielding:
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The corresponding wave functions corrected at first order are given by (3.64):

Equations (3.63) and (3.64) can be used to obtain analytical expressions for the
transition fields and intensities in the limit . In this limit the spin states
(3.64) are not pure spin states and in general five transitions are expected
corresponding to four  transitions at zero order, and one 
transition. The first-order expressions for the transition fields are:

for the four  transitions and

for the transition.
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Fig. 3.12. Schematic representation of the spin levels and EPR transitions for an S = 1 system in the weak
exchange limit. The levels are plotted for the static magnetic field parallel to the z axis of the  tensor. The
graph represents JAB > 0

Energy levels and transition fields are schematically shown in Fig. 3.12 for B
parallel to the z axis of the  tensor. When the anisotropic interactions become
vanishingly small, the φ term in (3.65) and (3.66) tends to the value [J + K(mA −
mB)]/2 and the four  transition fields reduce to three: two of them at
hν/gμB and the other two separated at (hν ± J)/gμB; each transition is split into
hyperfine lines separated by K/2 which is half the value observed in the
mononuclear species as already encountered in the strong exchange limit. When the
anisotropic interaction has sizeable values, the hyperfine splitting can be largely
different from this value. It must be noted, however, that since B5 in (3.66) does not
depend on φ the hyperfine splitting is not affected at first order by the value of the
anisotropic interaction. The transition probabilities strongly depend on the value of
the anisotropic interaction and J. We will not work out here general expressions for
the transition probabilities which can be found in [3.17a]. Particularly simple
expressions are obtained at first order for the  transitions in axial
symmetry assuming a dipolar form for the anisotropic interaction:

where the numbers refer to the transitions shown in Fig. 3.12 and a2 = U2 + V2, and
b2 = W2 + X2. The  transition probability has no first-order
contributions and the second-order ones can be expressed as:
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The only contribution to the  transition comes from the anisotropic
interaction and the intensity of this transition is expected to decrease on decreasing
the value of the anisotropic interaction (increasing rAB values) being zero for null
anisotropic interaction.

The above formalism can still be applied for  by properly modifying the
coefficients in (3.62) provided that anisotropic interactions are still smaller than
hν. The above perturbation procedure becomes inadequate for J  hν since 
and  are no longer close to the eigenstates of the system and a more general
approach based on the diagonalization of the hamiltonian matrix appears more
appropriate [3.18].

In the more general case of two different interacting centers {xA, yA, zA} ≠ {xB,
yB, zB} perturbation theory can still be developed using the general form of the
interaction hamiltonian (3.54–56). In this formalism the Zeeman terms of the two
centers forming the pair are separately reduced to diagonal form and the isotropic
exchange behaves as an anisotropic interaction. In this sense it is indistinguishable
from the dipolar interaction and its value can be derived only by computer
simulation of the spectra through (3.54–56). In order to apply the relevant equations
derived above, it is sufficient to substitute the following relationships to Eq. (3.60):

In Eqs. (3.62–63) the following changes should be made:

The first-order equations for the transition fields become:
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In the limit situation of zero exchange and dipolar interactions φ is 1/2[(KAmA −
KBmB) + BμB(gA − gB)] and the EPR spectrum consists of two separate resonances
at gA and gB with hyperfine splittings KA and KB, respectively.

3.5  Spectra of Pairs in the Weak Exchange Limit

In the weak exchange limit, and more generally when isotropic and anisotropic
interactions have comparable magnitude, the singlet and triplet states are no longer
pure spin states and the EPR spectra depend on both JAB and DAB. Weak
anisotropic interactions between inequivalent centers result in EPR spectra which
show separate resonances near the g values of the individual ions. These spectra
have been referred to as AB patterns, in analogy with high resolution NMR spectra.

Following the angular dependence of the transition fields on single crystals, it is
possible to measure isotropic and anisotropic contributions as well as hyperfine
interactions. An example of the relative influence of isotropic, anisotropic, and
hyperfine interactions on the appearance of single crystal EPR spectra is shown in
Fig. 3.13. The combined isotropic and anisotropic interactions result in a further
splitting of the hyperfine lines, which in the case of two S = 1/2 interacting spins
are split into doublets.

In the literature only a few examples of single crystal spectra have been reported
and much effort has been exerted to measure the spin hamiltonian parameters by
computer simulation of polycrystalline powder or frozen solution spectra and a
number of simulation procedures have been suggested [3.17–18]. In fluid solution
the anisotropic interactions, which are represented by a traceless second-rank
tensor, are averaged to zero by the tumbling motion of the molecule. Provided that
the dinuclear structure is retained in the fluid solution, the EPR spectra can be used
to estimate the JAB value. This procedure has been applied to obtain the JAB values
of a wide variety of spin-labeled transition metal complexes of copper(II),
silver(II), and oxovanadium(IV). The spectra generally show AB patterns, whose
lines can be referred to as metal or radical according to the nature of the transition
(g value) as JAB → 0. For JAB values smaller than the g-value difference between
the metal and radical resonances both the metal and radical resonances are split
into doublets. On increasing the value of JAB the intensity of the outer lines of the
AB spectrum decreases and the positions of the inner metal and radical resonances
tend to their average value. With this technique JAB values in the range 10−4 – 10−1

cm−1 have been measured [3.17c].
The analysis of polycrystalline powder or frozen solution spectra is generally
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complicated by the fact that not all the  transitions can be observed
since they merge into a central broad line, because of the low value of DAB, or can
be obscured by the presence of monomeric impurities. Some information can,
however, be extracted from the observation of the  transition. The
transition field in the polycrystalline powder spectrum is at

where  and α2 = cos−1 {[9 − 4(DAB/hν)2]/[27 −

36 (DAB/hν)2]}. In axial symmetry (EAB = 0) it is possible to measure DAB directly
from the position of the  transition once one has measured
independently the g values. Equation (3.72) can be applied only when singlet and
triplet states are well separated in energy with respect to hv 
and for . In this case the g values can be expressed to a good
approximation through Eq. (3.20). In the hypothesis that all of the anisotropic
interactions come from dipolar interaction, the measured DAB values can be used to
estimate the distance between the spin centers, rAB, using the relationship:

98



Fig. 3.13. Computed spectrum for the interaction of SA = 1/2, IA = 1/2 with SB = 1/2 and no nuclear spin. The
spectrum is computed along the z axis and rAB is taken to be parallel to the z axis (ε = 0, η = 0). The g values

are 1.956 and 1.899 for center A and B, respectively, JAB = 0.0013 cm−1. The D values are computed as a
function of the distance indicated on the right-hand side of the figure [3.18]

In Sect. 3.4 we have emphasized that in the hypothesis of dipolar interaction, the
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intensity of the  transition in single crystals depends on  [see e.g.
(3.69)]. The intensity of the signal in a polycrystalline sample or a frozen solution
results from the spherical average of the single crystal intensities and it is therefore
expected to depend also on . Furthermore, the intensity of the 
transitions is enhanced when the three spin levels are equally separated in energy
so it is greater when the magnetic field is at about 54.7°, the magic angle with
respect to rAB, i.e., the value of the angle at which the dipolar fine structure
collapses. The actual value of the magic angle is, however, dependent on the
anisotropies of the spin system and can significantly deviate from the 54.7° value
[3.18]. At the magic angle the shape of the resonance line is greatly influenced by
the nuclear hyperfine interaction and could be used to monitor the relative
orientation of the dipolar and hyperfine axes. By computer simulation it has been
shown that the relative intensity of the  transition, defined as the ratio
between the intensity of transition 5 with respect to the total intensity of transitions
1–4 (see Fig. 3.12), is a monotonic function of rAB. A plot of the logarithm of the
relative intensity versus rAB, computed for gA  gB = 2, is shown in Fig. 3.14. It
has been found that in any case the relative intensity of the  transition
follows the general relationship [3.20]:

where A is a constant depending on the g values of the two spin centers and on the
frequency of the experiment. The value of the constant A at a given frequency and
for given gA and gB can be determined by a least squares fit of the computed
relative intensity of the transition with (3.74). This procedure can be followed for
any value of hν and g and allows one to determine the A value appropriate to the
system under examination. In the case of only one anisotropic gi tensor the A
constant takes the form:
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Fig. 3.14. Plot of the logarithm of the relative intensity of the  transition versus rAB. The curve is
computed for gA  gB = 2 [3.19]

Table 3.8. Comparison between distancesa measured from EPR spectra and X-ray techniques

aJ values from magnetic susceptibility measurements. Compounds:
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where . Equation (3.75) has been found to follow accurately
the frequency dependence of A up to Q band frequency.

In order to make a comparison between the different methods to obtain rAB from
the EPR spectra we report in Table 3.8 the rAB values measured in a number of
compounds whose X-ray structure was determined.

3.6  Intermediate Exchange

In a number of experimental situations two or more terms in (3.1–3) can have
comparable magnitudes and in this case no simple perturbation procedure can be
applied. The eigensolutions of (3.1–3) are no longer pure spin states and the exact
knowledge of the energies and eigenvectors is required to interpret the EPR
spectra. This situation is expected to occur in principle in heterobimetallic couples
in which at least one of the ions has S > 1/2 as well as in couples where SA = SB >
1/2. In fact, all these systems single ion anisotropies can be as large as or larger
than JAB.

A general interpretation of the EPR spectra is still possible for all those systems
with an odd number of electrons, such as , SB = 1 [3.22]. In this case, in fact,
the ground and the next excited state are always Kramers doublets and, if zero field
splitting effects cause the excited states to occur at energies larger than hν above
the ground Kramers doublet, the observed EPR transitions are always within states
belonging to the same Kramers doublet and the EPR spectra can be interpreted
using an effective S′ = 1/2 spin hamiltonian. Neglecting superhyperfine couplings a
convenient form of the effective spin hamiltonian is
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Since S′ is an effective spin, its quantization axes can largely deviate from the
laboratory system (to which B is referred) and from nuclear spin axes; this means
that geff and  in general do not transform like second-rank tensors upon rotation
of the reference frame.

Let  and  indicate the components of the ground Kramers doublet. A
formal relationship between the effective spin S′ and SA and SB spin operators is

where the elements of the Mk matrices can be evaluated from the real and
imaginary parts of the expectation value of the components of Sk over  and 

 as shown in Table 3.9. The actual form of the  and  states can be
obtained by diagonalization of the spin hamiltonian including isotropic and
anisotropic interactions

Table 3.9. General expressions for the Mk matrix elementsa

a  and  are the components of the ground Kramers doublet. k = A or B. Im and Re indicate the
imaginary and real part of the matrix element, respectively.

By substituting (3.77) into the Zeeman and hyperfine terms in (3.1–2) we obtain the
effective spin hamiltonian

which, by comparison with (3.76), yields
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Equations (3.80–81) provide a generalization of (3.20) and (3.22–23) where we
have substituted general Mk matrices (k = A, B) to constant factors.

The above formalism has been applied to interpret the EPR spectra of
copper(II)-nickel(II) pairs [3.22] and the EPR spectra of doublet-triplet
organometallic molecular pairs in diamagnetic host lattices [3.23]. In the following
part of this section we will consider in some detail the EPR spectra of (SA = 1/2,
SB = 1) couples as an example.

From the isotropic exchange interaction two total spin states S = 3/2 and S = 1/2
arise. In general, the S = 3/2 state splits in zero field into two Kramers doublets so
that a total of three Kramers doublets arise from the combined effect of the
isotropic and nonzero anisotropic interactions in (3.78).

The energies of the three Kramers doublets are shown in Fig. 3.15 as a function
of the ratio R = JAB/DB. For simplicity the curves have been computed from (3.78)
for an axial DB tensor and for DAB = 0 and dAB = 0 (DA being always zero in the
present case). The doublets in Fig. 3.15 are labeled in the limit . For an
antiferromagnetic exchange interaction, JAB > 0, the ground Kramers doublet is
always  irrespective of the sign of DB, while when the exchange
interaction is ferromagnetic, , the ground doublet is  for 
and  for . Therefore, when the isotropic exchange interaction is
ferromagnetic, the sign of the local zero field splitting of nickel(II) determines the
nature of the ground doublet and from the EPR spectra it is thus possible to
determine the sign of both JAB and DB.

Under the above assumptions the Mk matrices are diagonal and axial and
expressions for their matrix elements can be easily obtained as a function of R
since the eigenvalue problem can be solved analytically:
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Fig. 3.15. Reduced energy (E/DB) of the low lying Kramers doublets arising from
the interaction between SA = 1/2 and SB = 1 spins as a function of the R = JAB/DB
ratio. The curves have been computed with , , ,
EB/DB = 0. The levels are labeled in the  limit, left DB > 0; right DB < 0
[3.22]

for DB > 0, and

for DB < 0 and R > 0, and

for DB < 0 and R < 0. The upper and lower sign in (3.82–87) holds for R < 2 and R
> 2, respectively, and e = tan|√8R/(2-R)|.

In more general cases than that considered above the solution of the eigenvalue
problem requires numerical diagonalization of the hamiltonian matrix and no
analytical expression for Mk is possible. The two matrices must be obtained from
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Table 3.9 using the eigenvectors obtained from the diagonalization of (3.78).
As an example we show in Figs. 3.16 and 3.17 the effective g and A tensors

computed including only the B single ion anisotropy, in the axial case, and for λB =
EB/DB = 0.13, for DB positive and DB negative, respectively. It is apparent that the
largest deviations from the limiting values computed using (3.20–22) are computed
on the A values. In fact, the computed g values closely approach the limiting values
for R > 3, while the A values are still significantly different from the limiting
values at R = 5. This is clearly a consequence of eqs (3.80) and (3.81) since the 

 tensor depends on the Mk matrix only and even a small deviation of Mk from
the constant value required by (3.23) is important. These calculations suggest the
use of the deviation of  from the limiting value of  as a sensitive probe
for the estimation of the R ratio.
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Fig. 3.16. Computed eigenvalues of the effective g (lower) and A (upper) tensors as a function of the R =
JAB/DB ratio with DB > 0, , , , AAx = AAy = 50 × 10−4 cm−1, AAz
= 138 × 10−4 cm−1. Figures on the left correspond to EB/DB = 0, and on the right to EB/DB = 0.13 Full lines
represent the z component, broken lines the y component, and dotted lines the x component. Horizontal lines
correspond to the strong exchange limiting values computed by (3.20–23) [3.22]

In the above discussion we have neglected both anisotropic and antisymmetric
exchange interactions. Their effect is easily taken into account using the exact
eigenvectors and Table 3.9. In general, their inclusion will cause the Mk matrices
to have a general form and the effective tensors will thus be largely misaligned
with respect to the single ions reference frames. The effect of anisotropic and
antisymmetric terms has been considered with some detail in the case when DB is
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the leading term. In this situation it was found that at first order in perturbation
theory the effective g tensor is given by geff = gA + gBMB and it is no longer a
symmetric matrix, while the A tensor is not affected by the interaction.

Fig. 3.17. Computed eigenvalues of the effective g (lower)and A (upper) tensors as a function of the R =
JDB/Db ratio with DB < 0, , , , AAx = AAy = 50 × 10−4 cm−1, AAZ
= 138 x 10−4 cm−1. Figures on the left correspond to EB/DB = 0, and on the right to EB/DB = 0.13. Full lines
represent the z component, broken lines the y component, and dotted lines the x component. Horizontal lines
correspond to the strong exchange limiting values computed by (3.20–23) [3.22]

To conclude this section we will report an example where the above formalism
was applied. In Fig. 3.18 the polycrystalline powder EPR spectra of nickel(II)
doped tetra(μ-benzoato-O,O′)bis(quinoline)dicopper(II) recorded at 4.2 K are
shown [3.24]. A sketch of the structure of the pure copper complex is shown in Fig.
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3.19 [3.25]. The single crystal spectra show transitions within one Kramers doublet
and were interpreted with an effective S′ = 1/2 spin hamiltonian with , 

, , and Az = 94 × 10−4 cm−1. Since both the pure copper(II) and
the pure nickel(II) complexes are antiferromagnetically coupled with isotropic
exchange constants of the order of 300 cm−1, they cannot contribute to the EPR
spectra at 4.2 K, which should arise only from copper(II)-nickel(II) couples. Using
for  the value seen in the spectra of the copper(II)–zinc(II), 

, Eq. (3.81) gives MCuzz  2/3 instead of the value 1/3
expected in the strong exchange limit. From Figs. 3.16 and 3.17, which have been
computed using the  and  values seen in the copper(II)-zinc(II) pair, we
learn that this can occur when R is close to either −1/3 or 0.6. Only the first choice,
however, correctly predicts  and  close to 4. The best fit to the experimental
spin hamiltonian of the copper(II)-nickel(II) pair, including only single ion
anisotropy, was found for R= −1.2 and λNi = 0.133, the calculated spin hamiltonian
parameters being , , , and Az = 93 × 10−4 cm−1. From
the single crystal measurements it was found that the  direction is rotated 14°
away from the metal–metal direction which would be the z direction idealizing the
symmetry of the dimer to C4ν. Although this rotation can be ascribed to slight
misalignment of the tensors centered on the copper and nickel centers, due to the
actual Ci symmetry of the dimer, it can be reproduced including dAB with dABX/JAB
= −0.12.
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Fig. 3.18. Polycrystalline powder EPR spectra of nickel(II) doped tetra(μ-benzoato-O,O
′)bis(quinoline)dicopper(II) recorded at X-band frequency and 4.2 K. The spectrum is plotted between 0 and
5000 Gauss

Fig. 3.19. ORTEP view of the dinuclear complex tetra(μ-benzoato-O,O′) bis(quinoline)dicopper(II) [3.25]

The EPR spectra of the nickel(II) doped tetra(μ-benzoato-O,O′)
bis(quinoline)dicopper(II) showed that the isotropic exchange interaction between
copper(II) and nickel(II) is ferromagnetic and that DNi is positive and of the same
order of magnitude as JCuNi.
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4 Spectra of Clusters

4.1  The Spin Hamiltonian for Oligonuclear Systems of
Interacting Spins

The spin hamiltonian appropriate to describe the EPR spectra of clusters of three or
more weakly interacting paramagnetic centers can be written as an obvious
extension of (3.1–3) and takes the form

In (4.1) Hi is the spin hamiltonian (3.1) of the individual spin center i and Hij is
the interaction hamiltonian (3.3) between couples of spins assumed to be symmetric
with respect to the i and j indices. The sums in (4.1) extend over all the
paramagnetic centers forming the cluster. It must be stressed here that (4.1) is not
the most general hamiltonian to describe the magnetic and exchange interactions in
a cluster. Such a hamiltonian, in fact, has the only requisite to be invariant with
respect to the symmetry operations of the cluster and should include n-center
interactions as well as spin operators of the form jij(Si • Sj)2. Hamiltonian (4.1) is,
however, the most widely used to interpret the EPR spectra and we will use this
operator in the following. A number of general equations, which we will report in
this chapter, can be, however, easily modified to include the jij terms.

The most commonly investigated clusters are the ones in which the isotropic
exchange interaction is the dominant term in (4.1). In this case the eigenstates of
(4.1) are most conveniently found among the eigenstates of Sz and S2 where S =
∑iSi is the total spin operator. This situation is completely analogous to that found
for the dinuclear case and we will call this the strong exchange limit. In this
situation the EPR transitions occur within a given S manifold or within states
arising from a given S manifold and the EPR spectra can be interpreted using spin
hamiltonians containing parameters which can be expressed as linear combinations
of terms including single ion spin hamiltonian parameters and interaction terms.

When the above assumptions are no longer valid, the interpretation of the EPR
spectra requires the knowledge of the eigenstates of (4.1), which must be obtained
through matrix diagonalization. These eigenstates can then be used as zero-order
functions to which one can apply the Zeeman perturbation. This approach, which
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we already noted to be hardly applicable to the dinuclear case, becomes practically
unworkable when applied to higher nuclearity clusters.

In the literature a number of trinuclear clusters have been carefully investigated
through EPR spectroscopy, only a few tetranuclear clusters have been studied, and
very little has been done on larger clusters. In almost all the cases the strong
exchange limit was applied. Thus, in the following we will develop the necessary
formalism to compute the energy levels of trinuclear clusters in the strong exchange
limit and we will give the necessary information to extend the formalism to larger
clusters. Later we will derive the equations for interpreting the EPR spectra of
trinuclear systems in the strong exchange limit.

4.2  Spin Levels of Exchange Coupled Clusters in the
Strong Exchange Limit

In the strong exchange limit we can label the spin levels of the cluster according to
the eigenvalues of S2 and Sz. These operators, in fact, commute with the isotropic
part of (4.1). Since we are dealing with more than two spins, the eigenstates of Sz
and S2 are not uniquely determined by the spin quantum numbers S and Ms, but a
number of additional quantum numbers are required according to the different
“coupling schemes” of the interacting spins. Consider, for example, the simplest
case of the coupling of three spins Si(i = A, B, C). The total spin can be obtained by
coupling spins SA and SB first to give SAB = SA + SB and then SAB and Sc to give S
= SAB + Sc. The resulting states will be conveniently labeled using the eigenvalues
of the commuting observables  as 
. In the case of three spins  the allowed spin states are:

corresponding to one quartet, S = 3/2, and two doublet, S = 1/2, states. We might as
well couple SB and Sc first to give SBC = SB + Sc and then SA and SBC to give S =
SA + SBC. With this coupling scheme we obtain states like ,
corresponding to the same eigenvalues of S2 and Sz as the states 

. From the coupling of three spins  we can obtain a maximum
of eight spin functions orthogonal to each other which span the  space;
therefore the two eightfold orthonormal sets  and 
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 are not linearly independent and must be transformed one into
the other by a unitary transformation. In general, this means that any 

 ket can be expressed as a linear combination of 
 kets according to:

where the sum is over all the allowed values of the intermediate spin coupling
quantum number SBC. The expansion coefficients in (4.3) are just the scalar
products between kets taken from the two coupling schemes and are independent of
M (scalar products do not depend on the orientation of the coordinate system).
These coefficients, which are also called recoupling coefficients, are most
commonly written using a 6-j symbol, so called for obvious reasons, to which they
are related by a phase factor according to

The above arguments can be extended to the coupling of four spins to give states
of the form . All these kets are related by unitary
transformations using 9-j symbols

The most relevant properties of the 6-j and 9-j symbols are given in Appendix B.
Numerical tables of 6-j and 9-j symbols are given in Refs. [4.1–3].

Recoupling of five, six, and seven spins are possible through 12-, 15-, and 18-j
symbols [4.4] which will not be used in this book.

In the most general case the isotropic exchange hamiltonian for a rn-nuclear
cluster

commutes with S2 and Sz, but does not commute with all of the intermediate spin
coupling operators. Since we use a representation whose states are eigenstates of
the squares of the intermediate spin coupling operators and of S2 and Sz, the
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representation matrix of (4.6) will be block diagonal, each block corresponding to
states with the same value of S independent of the eigenvalues of the other
operators forming the commuting set of observables of our representation. The full
representation matrix of (4.6) can be built up by recurrence starting from one pair
of spins and adding one spin at a time, thus reducing the problem always to the
coupling of two spins, or using the general vector coupling scheme. The first
approach is slowly convergent especially when dealing with , due to the
large number of spin states to be considered, while the second method becomes
unworkable for clusters with more than four atoms, since it requires the use of 12-j
and higher multiplicity symbols which are difficult to handle without the help of a
fast computer. Vector coupling techniques are, however, very helpful in dealing
with trinuclear systems and coupling this technique with the recurrence method for
larger clusters is probably the best way to operate.

Let us first examine the case of three interacting spins. It is convenient to rewrite
the interaction hamiltonian in (4.1) in a generalized form as

where Tk(Si) is a k-rank irreducible tensor operator of the operator variable Si
[4.5] and the spin centers are labeled with numbers instead of letters for the sake of
clarity. We will adopt this notation in the rest of the chapter. Ok is a k-rank
irreducible tensor operator which contains the spin hamiltonian parameters.
Operator (4.7) is equivalent to the interaction spin hamiltonian Hij in (4.1). Let us
consider, for example, the J12S1 · S2 part of the isotropic exchange interaction. In
(4.7) it is obtained by putting Tk3(S3) = 1, which implies k3 = 0 since the identity
operator is zero rank, k = 0, and k12 = 0 as

Since

we get

where we have defined
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In a similar way we can define the Ok tensors to express the interaction hamiltonian
in the usual way. It must be noted that in (4.7) we included also terms of the form 

 as well as terms with higher spin powers and multicenter interactions.
The matrix elements of Xk can be efficiently computed using the Wigner-Eckart

theorem [4.6]:

where the reduced matrix element is given by the general equation

General expressions for the reduced matrix elements of zero-, first-, and second-
rank tensor operators appearing in the right-hand side of (4.13) are given in Table
3.2.

One of the possible forms of the generalized interaction spin hamiltonian for a
tetranuclear cluster is:

where we have coupled a tensor operator of rank k1 to a tensor operator of rank k2
to give a tensor operator of rank k12 (|k1 − k2| ≤ k12 ≤ k1 + k2); then we coupled this
operator to a tensor operator of rank k3 to get a tensor operator of rank k123 (|k12 −
k3| ≤ k123 ≤ k12 + k3) which finally couples with a fourth tensor operator of rank k4
to give a total tensor operator of rank k (0 ≤|k123 − k4| ≤ k ≤ k123 + k3 ≤ 2). Since the
tensor operator of rank k12, Tk12(S12) = {Tk1(S1) ⊗ Tk2(S2)}k12, is always obtained,
in this coupling scheme, by coupling the same two tensor operators Tk1(S1) and
Tk2(S2) we can rewrite (4.14) in a way formally similar to (4.7) as
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The matrix elements of (4.15) can be computed through (4.12) and (4.13). The
reduced matrix element of Tk12(S12) needed in (4.13) can be computed as

Repeated applications of (4.12), (4.13), and (4.15) allow one to compute the
matrix elements of any interaction operator for clusters containing more than four
spin centers.

It must be noted here that although the above equations seem rather complicated
to be handled, they offer the great advantage to be close equations which can be
easily included in a general computer program which deals with any spin system.

4.2.1  Spin Levels of Trinuclear Clusters

The most general arrangement of three centers is on the vertex of a general triangle
(Fig. 4.1).

Each spin interacts with the adjacent ones and the strength of these interactions
determines the magnetic geometry of the triad. When the three coupling constants
are equal, we have a regular triad (represented by an equilateral triangle). When
two of them, e.g. J13 and J23, are equal but different from the other, J12, we have a
symmetric triad (represented by an isosceles triangle) and when all the coupling
constants are different we have a general triad (represented by a scalene triangle).
A limiting situation can occur when one of the coupling constants, e.g. J13, is zero.
This corresponds to a linear arrangement of the three spin centers (linear triad)
when only nearest neighbor interactions are considered. This approximation is the
most widely used in the treatment of spin clusters and most often only interactions
between adjacent spins are included in (4.6). The linear triad is symmetric when
the two coupling constants J12 and J23 have the same value.

The spin hamiltonian (4.6) describing the isotropic exchange interaction between
three paramagnetic centers in a general triad takes the form:

117



It can be rewritten in the generalized form taking the k = 0 term in (4.7) and
summing over all the kikj(i ≤ j) pairs as

Fig 4.1. Exchange coupling constants for the coupling of three spins

where

Application of (4.13) gives the following reduced matrix elements:

118



where the definition of Aij is obvious.
By using (4.12), (4.18), and (4.19) one easily obtains the following non-zero

matrix elements:

We thus found from (4.20) and (4.23) that the operator J12S1 · S2 couples states
with the same S and S12 and from (4.24–25) and the symmetry properties of the 6-j
symbols that the other matrix elements are zero unless ΔS12 = |S12 − S′12| = 0, 1. It
must be remembered here that we are now using one of the possible coupling
schemes, namely the S12 + S3, and care must be taken when comparing results
obtained from other coupling schemes in the labeling of the energy levels.

Equations (4.23–25) can also be expressed in an analytical form [4.7] using
algebraic formulae of the 6-j symbols [4.8–9] and we obtain the following
expressions for the diagonal and nondiagonal matrix elements of (4.17):

It is apparent from (4.27) that the matrix elements connecting states with 
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 are zero when J13 = J23 and the hamiltonian matrix is diagonal. This is
the case of a symmetric triad. For a regular triad all the coupling constants are
equal and spin states with the same S are at the same energy:

For a symmetric linear triad the hamiltonian matrix is diagonal and the diagonal
elements have the form:

Explicit expressions for the hamiltonian matrix of a number of general triples are
given in Table 4.1.

The reduced energies of the spin levels for trinuclear systems with 1/2 spins are
reported in Fig. 4.2 as a function of the r = J13/J23 and R = J12/J23 ratios. From the
coupling the following spin states arise: , , and . Figure
4.2a shows the energy levels for a symmetric triple (r = 1). In this case the
hamiltonian matrix is always diagonal independently of the R value. When R = 1
we have a regular triad and the S = 1/2 states are degenerate. The energy levels for
a linear triad are shown in Fig. 4.2b. When R = 1 we have a symmetric linear triad.
In Fig. 4.2c and d the energy levels for general triads with r = 0.5 and − 0.5,
respectively, are shown. The ground state of the triad is always a doublet state
when r is negative and smaller than  − 0.5 independently of the sign of J23. The
quartet state is the ground state only for R > 0 and J23 < 0, i.e., when all the
pairwise interactions are ferromagnetic.

4.2.2  Spin Levels of Tetranuclear Clusters

On increasing the number of interacting nuclei the topology of the magnetic
interaction becomes more complicate since the number of possible geometrical
arrangements of the spin centers is larger. For clusters with more than three spins,
in fact, we pass from a plane topology to a space topology. Fortunately not all the
possible topological structures for an n-vertex cluster can be found in nature and
we can thus avoid the complication of a general treatment of the exchange
interaction in tetranuclear clusters to a few cases which have been studied. Any
interested reader can of course perform the calculation of the spin levels of any
cluster following the equations of Sect. 4.1.

Table 4.1. Explicit expression of the nonzero matrix elementsa of the isotropic exchange operator for general
triads with 
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aThe matrix elements are labeled as in Eqs. (4.23–25). The last three columns are the coefficients which
multiply the specified Jij values. The final form of the matrix elements is given as the sum of the contributions
along each line.

Fig. 4.2. Dependence of the reduced energies, E/J23, for a trinuclear cluster with 1/2 spins on the R = J12/J23
ratio with (from left to right) r = J13/J23 = 1, 0, 0.5, –0.5, respectively

The most common arrangements of four spins arise from the tetrahedral geometry
shown in Fig. 4.3.
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Fig. 4.3. Exchange coupling constants for the coupling of four spins

In the most general arrangement six exchange coupling constants are needed to
describe the magnetic interaction. In a regular tetrahedral geometry all the spin
centers are equivalent and the exchange interaction can be described by the
hamiltonian:

Only one exchange coupling constant, J = J12 = J13 = J14 = J23 = J24 = J34, can in this
case account for the exchange interaction.

Two common distortions from the tetrahedral geometry will be now considered,
one preserving an S4 symmetry like a symmetric tetragonal deformation and the
other preserving a C2v symmetry corresponding to unequal, pairwise distortions.
The spin hamiltonians relevant to describe the exchange interaction in these cases
are:

In (4.31) J = J12 = J34 and J′ = J13 = J14 = J23 = J34, and in (4.32) J″ = J13 = J14 = J23
= J34.

The eigenvalues of (4.32) can be easily found in the coupling scheme 
 since (4.32) commutes with both  and S2. It is

convenient to rewrite (4.32) as

which gives:

It must be noted that the symmetry of the hamiltonian (4.33) does not allow for
degeneracy other than the spin degeneracy itself. This is not the case for the
hamiltonian (4.30) whose symmetry requires all the states with the same S to be
degenerate.

Explicit expressions for the energy of the spin states for tetrads of spin  and 1
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are given in Table 4.2. The energy levels of a tetrad of  spins are plotted in Fig.
4.4 as a function of the R = J12/J34 and r = J″/J34 ratios. In Fig. 4.4a the energy
levels computed for a tetrad of S4 symmetry (R = 1) are shown. It should be
observed that the  and  triplet levels are accidentally degenerate. The
quintet state is expected to be the ground state for pairwise ferromagnetic
interactions (r > 0) and for strong ferromagnetic J″ interaction (r < – 2, i.e. J″ < –
2J34). The point at r = 1 corresponds to the tetrahedral cluster in which the coupling
constants are equal; in this case all the levels with the same S are degenerate. On
passing to tetrads of C2v symmetry (Fig. 4.4b, c) removes the accidental degeneracy
of the  and  triplets.

It is appropriate to report here the general equation for computing the matrix
elements of the generalized interaction hamiltonian in the 
coupling scheme which can be helpful in evaluating the matrix elements of
operators of first and second rank. The generalized hamiltonian in the present
coupling scheme takes the form:

Table 4.2. Energies of the spin statesa for C2v tetrads with 1/2 and 1 spins

aFor any spin state the appropriate energy is obtained by adding together the coefficients times the spin coupling
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constants along each line.

Fig. 4.4. Dependence of the reduced energies, E/J34, for a tetranuclear cluster with 1/2 spins on the r = J″/J34
ratio with (from left to right) R = J12/J34 = 1, 0.5, –0.5, respectively

The reduced matrix element of Xk can be easily computed through standard tensor
operator techniques as:

4.2.3  Spin Levels of Linear Clusters

In Sect. 4.2.1 we have found the energy levels of a linear trinuclear cluster as a
particular case of the general trinuclear cluster. In the following we will give a
general solution for the energy levels of a linear N atom cluster. The appropriate
spin hamiltonian is
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where the summation is extended to N-1 centers. The appropriate states can be built
up adding the N-th spin to the N-1 cluster, i.e., 

, and the general form of the spin
hamiltonian matrix elements can be found by recurrence. Equations (4.20, 4.22) are
the solutions for a trinuclear cluster. Adding one spin, S4, to the cluster we have for
the terms S1 · S2 and S2 · S3:

with A12 and A23 defined in (4.20, 4.22) since both operators commute with S4. For
the S3 · S4 term we note that Eq. (4.13) can be applied since the operator does not
involve S1 and S2. This gives:

where

One can easily prove on this ground that adding the center n to a chain of n − 1
requires the addition of matrix elements of the type:

with
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Equation (4.43) has been used to compute the energy matrix and the eigenvalues
and eigenvectors for chains with  and 5 ≤ N ≤ 11 [4.10].

4.3  EPR Spectra of Exchange Coupled Clusters in the
Strong Exchange Limit

In order to interpret the EPR spectra of clusters of exchange coupled centers we
must add to the spin hamiltonian (4.6) describing the isotropic exchange interaction
the other terms in (4.1), which describe the Zeeman, nuclear hyperfine, and zero
field splitting interactions. They have the form:

where the i and j indices run over all the paramagnetic centers forming the cluster
and k runs over all the nuclei with nonzero nuclear spin.

In the strong exchange limit the EPR transitions occur within the S levels which
are thermally populated at the temperature of the experience. The EPR spectra can
thus be interpreted using one or more effective S spin hamiltonians of the from:

In the particular case in which the isotropic exchange hamiltonian for a n-nuclear
cluster,  of Eq. (4.6), commutes with all of the intermediate spin coupling
operators, i.e., its representation matrix is diagonal, a relationship between the spin
hamiltonian parameters in (4.44–45) and the spin hamiltonian parameters in the
operator equivalent (4.46) can be easily set up. This situation occurs, for example,
in a symmetric triad or in a C2v tetrad, as it has been shown in the preceding
section.

In the following part of this section we will explicitly consider trinuclear
clusters, the extension to larger clusters being only a matter of more algebra.

In the case of a symmetric trinuclear cluster the spin hamiltonian parameters in
(4.44–45) and (4.46) are related by:
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In (4.47–49), due to the symmetry of the system, we also have T2 = T3 and D13 =
D23, where Ti is any single ion second rank tensor. The c and d coefficients can be
expressed according to (3.18) as

It must be noted now that the actual form of the c and d coefficients depends on the
coupling scheme one chooses since the reduced matrix elements in the numerator in
(4.50–52) are actually dependent on the coupling scheme [see Eq. (4.13)].

Relevant expressions for the c and d coefficients obtained using Eq. (4.13) are
shown in Table 4.3. In Table 4.4 we report the numerical values of these
coefficients for a number of symmetric triples. In any case we used the {S12S3S}
coupling scheme.

Since T1(S) = T1(S1) + T1(S2) + T1(S3) and T2(S) = T2(S1) + T2(S2) + T2(S3) +
2Σi < jT2(SiSj) the c and d coefficients are not linearly independent, but from
(4.50–52) it follows that

with obvious extensions to larger clusters. It is also easy to show that for the
highest spin multiplicity state S = (S1 + S2) + S3 the ratio between the c coefficients
is

Table 4.3. Relevant expressionsa for the c and d coefficients of a symmetric triad
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aThe shorthand notations S′ = S(S + 1) and S″ = 2S + 1 have been used. The c coefficients are zero when the
numerator is zero; when the denominator is zero they are equal to 1.

Table 4.4. Numerical values of the c and d coefficients for selected symmetric triads
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and since Si is proportional to the number of unpaired electrons ni, it follows that

as already obtained for two interacting spins.
In the case of a general triad the isotropic exchange spin hamiltonian (4.6) no

longer commutes with , and states with the same S and S12 are mixed together.
The hamiltonian matrix will thus be block diagonal, each block containing the states
having the same S and S12 values. A general expression for the eigenstates of (4.6)
is:
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where the CSSl2 coefficients must be obtained from the diagonalization of the blocks
of the hamiltonian matrix corresponding to a given S state or from a perturbative
solution of the eigenvalue problem. a is any additional quantum number, or set of
quantum numbers, added to conveniently label the eigenstates. When the eigenstates
obtained from this procedure are well separated in energy, so that only EPR
transitions within each spin state are observed, the spin hamiltonian (4.44–45)
describing the EPR experiment can be transformed into operator equivalents
containing S and S2 like (4.46). This transformation can be obtained using (3.18)
and yields

where

Equations (4.58–60) show that also for general triads the spin hamiltonian
parameters can be expressed as a linear combination of one and two center
contributions.

For clusters having more than three or four atoms application of (4.50–52) can
be tedious. It can be helpful, in these cases, to use recurrence relationships which
reduce the calculation of the c and d coefficients to products of coefficients relative
to the coupling of two spins. Let us consider the trinuclear case first. It can be
easily shown that the coefficients given in Table 4.4 can be obtained by coupling
the two spins S12 = S1 + S2 and S3 using the coupling coefficients in Table 3.2 or
3.3w. The relevant equations are given in Table 4.5. It can be easily verified that
conditions (4.53–54) are fulfilled.

With the use of Table 4.5 any spin system can in fact be handled. A tetramer, for
example, can be derived adding a new spin S4 to a trimer and Table 4.5 can be used
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to evaluate the c and d coefficients provided that one substitutes for the c(S1S2S12)
and d(S1S2S12) coefficients in Table 4.5 the c(S1S2S12S3S123) and d(S1S2S12S3S123)
coefficients obtained for the trinuclear case. With the coefficients obtained for the
tetramer one can use Table 4.5 again to compute the relevant coefficients for a
pentamer and so on.

Table 4.5. Recurrence relationships for calculating the c and d coefficients of a trinuclear clustera

aThe spin states of the trimer are labeled according to the coupling scheme {S1S2S12S3S}. The coefficients for
the dinuclear case appearing on the right-hand side of each equation are given in Tables 3.2 and 3.3.

Table 4.6. Recurrence relationship for calculating the c and d coefficients for a tetranuclear clustera
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aThe spin levels of the tetramer are labeled according to the coupling scheme {S1S2S12S3S34S34S}. The
coefficients on the right-hand side of each equation refer to the coupling of the two indicated spins and are given
in Tables 3.2 and 3.3.

For tetramers, or any other cluster with an even number of spins, however, it can
be convenient to split the cluster into two moieties and to look at the coupling of
these two smaller clusters. The spin levels of a tetramer, for example, can be
obtained, as already done in the preceding part of the chapter, by coupling the two
couples of spins, S1 + S2 and S3 + S4, together. The recurrence expressions to be
used for the c and d coefficients in this coupling scheme are easily worked out and
are reported in Table 4.6.

The combined use of Tables 3.2, 4.3, 4.5, and 4.6 allows one to compute the c
and d coefficients for any spin cluster.

4.3.1  EPR Spectra of Trinuclear Clusters

The investigation of the magnetic properties of trinuclear clusters has been
generally based on magnetic susceptibility data [4.11]. The interpretation of these
data was, however, not always unambiguous since three coupling constants should
be extracted by fitting the temperature dependence of the bulk magnetic
susceptibility measured on polycrystalline samples. For example, the interpretation
of the magnetic susceptibility data of iron(III) basic acetate
[Fe3O(CH3COO)6(H2O)3]Cl·5H2O requires the use of at least two different
coupling constants, while the iron atoms are at the vertex of an almost equilateral
triangle with the oxygen atom at the center, and the acetato groups bridge six pairs
of vertices of the FeO6 octahedra [4.12], as shown in Fig. 4.5. The magnetic data
have been in fact fitted with J12 = 76 cm−1 and J13 = J23 = 58 cm−1 [4.13], a poorer
fit being obtained with the regular triad model with J12 = J13 = J23  58 cm−1

[4.14]. This fact can reflect either the inadequacy of the Heisenberg-Dirac-van
Vleck spin hamiltonian or the intrinsic imprecision of the bulk magnetic
susceptibility measurements which generally results in large correlations between
the parameters used in the fitting procedure.

EPR spectroscopy can play an important role in the study of the magnetic
properties of small clusters and in principle can give information which is
complementary to the magnetic susceptibility data. The correlation of the measured
spin hamiltonian parameters (g, D, A, . . .) to the spin hamiltonian parameters of the
individual spins forming the cluster can depend on the Jij values, and information on
both their sign and their relative values can be obtained from EPR spectroscopy.
The maximum information is of course obtained by measuring the spin hamiltonian
parameters for all the spin states arising from the isotropic exchange interaction.
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This situation has never been met experimentally. The complete analysis of the
spectra requires the knowledge of the single ion spin hamiltonian parameters as we
will show with some examples. In the following part of this section we will report
some examples of analysis of EPR spectra of trinuclear systems with Si = 1/2 and Si
= 5/2, respectively. Owing to the small number of trinuclear clusters investigated
so far, we cannot fully explore all of the subtleties of the spin hamiltonian
formalism; in particular we will interpret the spectra in the strong exchange limit
and no formal theory of the single ion anisotropies will be developed.

Fig. 4.5. Schematic view of the structure of iron(III) basic acetate [Fe3O(CH3COO)6(H2O)3]C1·5H2O

Let us consider a triad of Si = 1/2 interacting spins. From the isotropic exchange
interaction three total spin states arise (see Table 4.1): one quartet  and
two doublets . In the case of antiferromagnetic interactions a
doublet state is the ground state. In symmetric triads, J13 = J23, and the 
state is the ground state for  (see Fig. 4.2.). For a general triad the
energies of the two doublet states are easily computed as eigenvalues of the 2 × 2
hamiltonian matrix given in Table 4.1. The energies are:

where the two states are labeled as  according to Eq. (4.57). The eigenvectors
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corresponding to (4.64) are given by:

with

When λ = 0 the triad is symmetric. Using (4.65–66) in (4.61) we get:

and

Owing to the ternary symmetry of the system independent solutions are obtained
only for λ values in the range O-π/6. λ values larger than π/6 correspond to a
different numbering of the spin centers. The dependence of the  coeffecients on λ
is graphically shown in Fig. 4.6. It is apparent that these coefficients are strongly
dependent on the λ values; this suggests that the  values themselves depend on λ
and that they can be used to estimate it. In order to compute the λ value from the
experimental  values Eq. (4.58) should be used. Once the single ion gi tensors are
known, in fact, Eq. (4.58) depends directly on λ. In a symmetric triad J12 = 0 and
Eq. (4.66) becomes:

and the ratio r = J13/J23 between the two coupling constants can be directly
evaluated from the measure of λ. For a general triad Eq. (4.66) should be used to
relate λ to the Jij values and ranges of relative values of the Jij values can be derived
from the measure of λ.

Let us consider the EPR spectra [4.15] of bis[N,N′-ethylenebis(o-
hydroxyacetophenone iminato) copper(II)] copper(II) diperchlorate dihydrate.
(CuHAPen)2Cu. The trimer is formed by two CuHAPen complexes (Fig. 4.7) which
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bind to the central copper atom through the oxygen atom of the ligand. The central
copper atom achieves a five-coordinate structure binding to a water molecule as is
shown in Fig. 4.8 [4.16].

From Fig. 4.8 it is expected that the exchange interaction between Cu1 and Cu2 is
negligible, and magnetic susceptibility data have shown that a strong
antiferromagnetic interaction (  400 cm−1) is operative between Cu3 and Cu1, Cu2
[4.17]. Single crystal EPR spectra recorded at 4.2 K were attributed to the 

 doublet state. The spectra showed evidence of intermolecular exchange
interactions which averaged out the signal of the magnetically inequivalent
molecules. Since the crystals are orthorhombic, space group P bca, the principal 
values were found along the crystallographic axes 

. Using in (4.58) and (4.68) for g1 and
g2 the tensor observed in the (CuHAPen)2Zn complex and the experimentally
observed  values, the  values were computed as a function of λ. These values
are shown in Fig. 4.9. Only the values computed for 0° < λ < 11° could be
considered satisfactory for a distorted five-coordinated copper(II) ion [4.18].
Equation (4.69) shows that r = J13/J23 should be in the range 0–1.6.

Fig. 4.6. The dependence of the  coefficients of Eqs. (4.67–68) on λ (see text)

In three-iron clusters containing iron(III) ions in the high spin states (Si = 5/2)
EPR spectra arising from a S = 1/2 state have been observed [4.19]. In the
ferredoxin from Azotobacter vinelandii the three-iron site is [Fe3S3(SCys)5(oxo)].
This complex contains a cyclic [Fe3(μ2 – S)3]3+ moiety schematically shown in Fig.
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4.10. The iron atoms have a S4 pseudotetrahedral coordination. The average Fe-Fe
separation is 4.1 Å [4.20]. More details on iron sulfur proteins may be found in
Chapter 9.

Kent et al. [4.21], using magnetically perturbed Mössbauer spectroscopy,
measured three different hyperfine coupling constants A1 = 47·10−4 cm−1, |A2| =
13·10−4 cm−1, and A3 = – 106·10−4 cm−1 for the three iron centers, respectively.
From the isotropic exchange interaction only two doublets arise (Table 4.1),
namely  and . In a symmetric triad (J13 = J23) the energies of these
states are given by:

Fig. 4.7. Schematic structure of N, N′-ethylenebis(o-hydroxyacetophenone iminato)copper(II), (CuHAPen)

Fig. 4.8. The five coordinate structure of the central copper atom in the trinuclear cluster bis[N,N′-
ethylenebis(o-hydroxyacetophenone iminato)copper(II)]copper(II) diperchlorate
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Fig. 4.9. The principal values of the g3 tensor computed as a function of the λ angle of Eq. (4.69)

Fig. 4.10. Schematic view of the three-iron site of the ferredoxin from Azotobacter vinelandii

The  state will be the ground state for J13 > 0 and 4/7 < J12/J13 < 1, i.e.,
when all the pairwise interactions are antiferromagnetic and nearly equal to each
other. From Eq. (4.50) the following ci coefficients can be computed:
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and using the value of – 52·10−4 cm−1 for the hyperfine coupling constant of the
single iron atoms we compute from (4.48, 4.71–72) the following values (cm−1) of
the hyperfine coupling constants:

It is apparent that the spin coupling model can explain why the hyperfine coupling
constants are different for the three spin centers and the values in (4.74) reproduce
also the observed signs of the hyperfine constants. The experimental values of A1
and A2 are, however, significantly different from each other contrary to (4.74).

If one allows for J13 ≠ J23 the two S = 1/2 states are admixed and from the
diagonalization of the 2 × 2 matrix of Table 4.1 two states  and  are
obtained. Their energies are:

and their eigenvectors are:

where

For the symmetric triad λ = 0 and .
Equation (4.6.1) gives for the  state:

In Fig. 4.11 the dependence of the  coefficients on λ is shown. Only λ values in
the range 0 – π/6 need be considered as already noted. It is apparent that significant
variations of  and  from the – 2/3 values are allowed even by small λ values.
The experimental Ai values can be used to extract one value of λ from (4.78) and a
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reasonable fit was obtained for λ = 6°. This means [Eq. (4.77)] that the Jij values
should obey the following relationships: J12 > J13 > J23 > 0; 0.5 < J23/J12 < 1; 0.6 <
J13/J12 < 1; J13 – J23 ≤ 0.2 cm–1; i.e., the exchange interactions should all be
negative and nearly equal.

As a last example we will consider the EPR spectra of quasi-linear trimer
octachlorodiadeniniumtricopper(II) tetrahydrate, Cu3(ade)2Cl8 (ade = adeninium
ion). The structure of the trimer is schematically shown in Fig. 4.12. The copper
atoms lie on a straight line and are coupled by a double chlorine bridge and an
adenine molecule acting as a bidentate ligand [4.22]. Since the adeninium bridge
can create a coupling between Cu1 and Cu3 we call this triad a quasilinear triad.
The temperature dependences of the magnetic susceptibility were fitted with either
J12 = J23 = 32.2 cm−1, J13 = 0, and  or J12 = J23 = 33.2 cm−1, J13 = − 16.1
cm−1, and . An equivalent fit, however, was obtained also with J12

= J23 = 28 cm−1, J13 = 18 cm−1, and . These results show that the
magnetic susceptibility alone cannot give a meaningful estimate of the J13 coupling
constant. In any case the resulting ground state is the  doublet, with the 

 doublet and the |1 3/2 > state J12 – J13 and 3/2 J12 above, respectively. The
effect of the J13 coupling is therefore that of varying the spacing between the two
doublet states. The EPR spectra of Cu3(ade)2Cl8 were recorded in the temperature
range 300 – 4.2 K and were interpreted with an S = 1/2 spin hamiltonian with 

, ,  at 300 K; , , 
 at 44 K, and , ,  at 4.2 K, and

no signal attributable to the S = 3/2 state was observed [4.24]. The spectra showed
a small variation of the  values between 300 and 77 K, and a much steeper
variation between 40 and 10 K. Below 10 K the  values become constant.
Unfortunately intermolecular exchange interactions are operative to average the
molecular signals in the cyrstals, thus preventing the measurement of the molecular
g tensor and of other spin hamiltonian parameters. The temperature dependence of
the spectra alone can give, however, some information. If the temperature
dependence is due to the variation of the thermal population of the different spin
levels it indicates that the  is almost depopulated only below  10 K. This
requires a small energy difference between the  and  states. Using
the three parameter sets obtained from the fitting of magnetic susceptibility data we
compute an energy separation between the two doublets of  32 cm−1,  49 cm−1

and  10 cm−1 respectively. The EPR experiment indicates that the last figure
should be correct and shows that only the third set of parameters describes the
exchange interaction in Cu3(ade)2Cl8.
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Fig. 4.11. The dependence of the  coefficients of Eq. (4.78) on λ (see text)
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Fig. 4.12. Schematic structure of the trimer octachlorodiadeniniumtricopper(II) tetrahydrate

The above examples show that knowledge of the spin hamiltonian parameters of
exchange coupled triads and measurement of the temperature dependence of EPR
spectra can be fundamental in understanding the exchange interactions. In particular,
very small differences in the exchange coupling constants, which could hardly be
revealed by magnetic susceptibility measurements, can be evidenced in this way.

4.3.2  EPR Spectra of Tetranuclear Clusters

The cubic tetramer Cu4OCl6(TPPO)4 where TPPO represents tetraphenylphosphine
oxide is surely the most studied tetrameric copper system. A sketch of the structure
is shown in Fig. 4.13. The crystals of the compound belong to the cubic system,
P43m space group [4.25]. The oxygens are located at the vertex of a regular
tetrahedron with Cu-Cu distance of 311 pm and lie on a crystallographic C3 axis
along with the oxygen atoms from the phosphine oxide ligands. The site symmetry
of each copper is C3v. An oxygen atom lies at the center of the Cu4 tetrahedron on a
Td crystallographic site.
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Fig. 4.13. Schematic structure of the cubic tetramer Cu4OCl6(L)4 (L = TPPO = tetraphenylphosphine oxide)

The spin states arising from the isotropic exchange interaction are reported in
Table 4.2. The temperature dependence of the magnetic susceptibility was
measured by Lines et al. [4.26]. No reasonable fit of the data was obtained using
the spin hamiltonian (4.30) for the regular Cu4 tetrahedron. The existence of
intercluster exchange interaction was claimed to explain the observed low
temperature antiferromagnetism. Within this model the data were fitted with J = –
29 cm−1 and z′J′ = 7 cm −1, where z′J′ represents the intercluster exchange in a
molecular field scheme. With these parameters the states with the same total spin S
are degenerate: the S = 2 state is the ground state with three S = 1 states at  58 cm
−1 and two singlet states at  87 cm−l.

Black et al. [4.27–29] have measured the single crystal EPR spectra of
Cu4OCl6(TPPO)4. The 4.2-K spectra were interpreted using the cubic S = 2 spin
hamiltonian:

where  and  are the fourth-order cubic fine structure operators [4.18]:

with  and B4 = 0.0044 cm−1. The  operator causes a zero
field splitting of the spin levels of the S = 2 manifold into a doublet (M = 0, 2) and
a triplet (M = ± 1, −2). The energy separation  between the doublet and the triplet
is . Up to now we have neglected the fourth-order operators in the
spin hamiltonian since they are usually negligible with respect to the secondorder
ones. They became important, however, in cubic complexes since the second-order
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terms are zero by symmetry.
From the temperature dependence of the intensity of the EPR signals, it was

found that the S = 2 state is not the ground state in Cu4OCl6(TPPO)4, but it is  14
cm−1 above the ground state which should be diamagnetic. This level ordering is
shown in Fig. 4.14 and compared to the level ordering obtained from magnetic
susceptibility data. In fact, the temperature dependence of the magnetic
susceptibility could be reproduced using the differences  and 

 as free parameters, the best fit being obtained for Δ1  85 cm−1, 
, and . The Δ2 value computed in this way is in

agreement with the EPR results and confirms the EPR information about the level
ordering. This level ordering demands a justification since it cannot be obtained
from the regular tetrad spin hamiltonian (4.30) and the cubic symmetry of the EPR
spectra demands that any low symmetry distortion from the tetrahedral cluster, if
any, should be dynamically averaged. Kamase et al. [4.30] took into consideration
four center interactions through a spin hamiltonian of the form

which yields Δ1 = J – 5J′/2 and . The fitting of the magnetic data
requires J  17 cm−1 and J′  –41 cm−1. It is apparent that although this model can
explain the observed level ordering it requires a quite large four-center interaction.

Another important feature of the EPR spectra of Cu4OCl6(TPPO)4 is the absence
of EPR signals attributable to transitions within the three S = 1 degenerate
multiplets. This can be due to the fact that the triplet states are depopulated at 4.2
K, again in agreement with the level ordering of Fig. 4.14b.

The analysis of the zero field splitting  and its correlation to magnetic dipolar
and anisotropic and antisymmetric exchange interactions was performed by
Buluggiu [4.31] using second-order perturbation theory. He has shown that only
anisotropic exchange and magnetic dipolar interactions contribute to the zero field
splitting of the S = 2 state, while both antisymmetric and anisotropic exchange
contribute to the zero field splitting of the triplet states.
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Fig. 4.14. Level ordering in Cu4OCl6(TPPO)4 as computed from the temperature dependence of the magnetic
susceptibility (a) and from EPR spectra (c)

Another interesting example of a rather symmetric tetranuclear cluster is
provided by the complex tetrakis [aqua(3-(pyridin-2-yl)-5-(pyrazin-2-yl)-1,2,4-
triazolato)copper(II)] tetranitrate dodecahydrate, [Cu(μ-ppt)(H2O)]4
(N03)4(H2O)12, schematically shown in Fig. 4.15. The compound crystallizes in the
tetragonal system, space group 141/a [4.32]. The cluster consists of four copper(II)
ions at the vertex of a tetragonally compressed tetrahedron with short copper-
copper distances Cu1 – Cu3 = Cu2 – Cu3 = Cu3 – Cu4 = Cu1 – Cu4 = 426.9 pm, and
long copper-copper distances Cu1 – Cu2 = Cu3 – Cu4 = 432.0 pm; four ppt− groups
bridging the edges of the tetrahedron, and four coordinated water molecules. The
coordination of each copper atom can be described as a slightly distorted (N3O)N
square pyramid with three of the four nitrogens from two ppt molecules and one
water molecule in the basal plane, the other nitrogen occupying the axial position.

The temperature dependence of the magnetic susceptibility was reproduced using
the  spin hamiltonian (4.31) with J = – 0.6 cm−1, J′ = 12.2 cm−1, 

. The energies of the total spin states arising from the isotropic
exchange interaction can be obtained from Table 4.2. The ordering of the energy
levels computed from the magnetic data is shown in Fig. 4.16. The S = 2 state is 
37 cm−1 above the ground singlet state and it is expected to be depopulated at 4.2
K. Two of the three triplet states are degenerate and close in energy to the 
state, the third triplet lying  13 cm−1 below them and  12 cm−1 above the |1 1 0
> ground singlet state. Polycrystalline powder EPR spectra recorded at room
temperature and at 4.2 K are shown in Figs 4.17 and 4.18, respectively.
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Fig. 4.15. The structure of the tetranuclear cluster tetrakis[aqua(3-(pyridin-2-yl)-5-(pyrazin-2-yl)-1,2,4-
triazolato) copper(II)] tetranitrate dodecahydrate, [Cu(μ-ppt) (H2O)]4(N03)4(H2O)12

Fig. 4.16. Level ordering in [Cu(μ-ppt) (H2O)]4(N03)4(H2O)12
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Fig. 4.17. a, b. Room temperature polycrystalline powder EPR spectra of [Cu(μ-ppt) (H2O)]4(N03)4(H2O)12
measured at Q-band (35 GHz) (a) and X-band (9.1 GHz) (b)

Single crystal spectra recorded at room temperature were analyzed using an
axial S = 2 spin hamiltonian with , , and |D| =0.0379 cm−1.
The fourth-order terms (4.79–81) were not necessary for the fitting of the spectra
and have not been considered. At 4.2 K the spectra are characteristic of a triplet
state and were interpreted with an axial s = 1 spin hamiltonian with , 

 and |D| = 0.0906 cm−1.
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Fig. 4.18. Polycrystalline powder EPR spectrum of [Cu(μ-ppt)(H2O)]4(NO3)4(H2O)12 measured at X-band
and 4.2 K

The EPR spectra confirm the overall energy level ordering of Fig. 4.16.
Nevertheless, they are also peculiar, since they show signals only from one of the
three triplet states arising from the exchange interaction. While this fact can be
explained by the small thermal population of the  and  states, since
the triplet spectra were observed only at temperatures lower than 10 K, they will
be unobserved at higher temperatures only assuming fast relaxation which causes a
broadening of the signals. The spectra, however, show that the relaxation between
the triplets is more effective than the relaxation within the S = 2 state.

The correlation between the single ion spin hamiltonian parameters and the spin
hamiltonian parameters of the spin states arising from the exchange interaction can
be easily obtained from Table 4.6 as:
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After referring all of the tensors in (4.83–4.86) to the tetragonal x, y, z axes and
applying the S4 symmetry relationships between the tensors, we obtain the relevant
equations to interpret the EPR spectra:

where D and E are the usual zero field splitting parameters. Equations (4.83, 4.86)
show that the g tensors of the  and  states should be equal, in
excellent agreement with the experimental results. Assuming a regular C4v
symmetry around each copper ion, nice agreement with the observed g tensors is
obtained using  and  in (4.87, 4.88), which are in fair
agreement with the values expected for a monomeric square pyramidal copper(II)
complex. From (4.88, 4.90) the following zero field splitting parameters were
obtained: D13, zz = 0.0681 cm−1and D12, zz = 0.0153 cm−1.

The spectra at 4.2 K show a resolved copper hyperfine structure in the plane
perpendicular to the crystallographic c axis. The observed maximum splitting into
seven line components is . This splitting is
observed when the static magnetic field is parallel to the z molecular axes of two
copper ions. In the same crystal orientation the other two copper ions forming the
tetramer have their x molecular axes, parallel to the field, therefore, the expected
splitting is very small. The observed value of  requires 

 for the individual copper ion, in agreement with
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the value expected for a square pyramidal complex [4.18].
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5 Relaxation in Oligonuclear Species

5.1  Introduction

Relaxation is extremely important in the EPR of magnetically coupled systems,
exactly as it is important for the spectra of isolated spins. However, the study of
relaxation properties of exchange coupled systems has not yet had the same
attention which has been devoted to the other parameters in the EPR spectra of
these compounds. Some work has been performed on pairs, much less is available
for oligonuclear species, a little more has been worked out for extended systems, as
will be shown in Chap. 6.

The main limitation in the study of EPR relaxation is the experimental difficulty
in the determination of either T1 and T2, which are very short at high temperature.
Under this respect also the spectra of isolated spins have not been fully
investigated, suffering the same limitations. Therefore, only a few studies at very
low temperature are available, while the high temperature range has been hardly
investigated at all, except for some indirect investigations through NMR
measurements [5.1].

In the following we will briefly outline the theoretical basis of electron spin-
lattice relaxation in pairs, resuming in short the general theories and specializing
them to couples. We will work out in detail some examples and then we will
mention some results in clusters containing more than two electron spins.

5.2  Theoretical Basis of Spin Relaxation in Pairs

The theoretical model currently used to describe spin-lattice relaxation in pairs is
analogous to that of mononuclear species [5.2–4]. This treatment is now well
established and we refer to the quoted texts, also for the necessary references.

For pairs, like for mononuclear species, several different processes can be
operative, namely the direct, the Raman, and the Orbach processes. The spin system
is assumed to be immersed in a thermal bath, to which it can dissipate
nonradiatively energy. Since the theory was first developed for solids, the
environment in which the spin is immersed is called lattice, and the lattice
vibrations, phonons, are responsible for the relaxation.
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A spin system is characterized by a set of eigenvalues of the hamiltonian which
describes it in the absence of dynamic phenomena. Turning on the interaction with
the lattice determines a fluctuation of all the terms of the hamiltonian, which are
then modulated by the phonon bath. All the components can be modulated, but the
most important for relaxation in single spin systems are crystal field and zero field
splitting modulation. In coupled spin systems also modulation of the exchange
hamiltonian becomes important, as will be shown later. The modulated
hamiltonians have the same form as the static ones, but the relative parameters
reflect the strain dependence of the static parameters and the symmetry of the
dynamic hamiltonian can be reduced compared to the static one. For instance, the
hamiltonian appropriate to the modulation of the isotropic exchange can take the
form:

where J′ = ro δJ/δrAB. rAB is the distance between the two coupled centers, and ro is
their equilibrium distance. The matrix elements of the dynamic hamiltonians,
therefore, follow the same selection rules as the corresponding static ones. A
phonon can be either absorbed or emitted when two levels have matrix elements
different from zero with the dynamic hamiltonian.

Considering two levels  and , a possible relaxation mechanism is
operative when the lattice can induce a transition between the two, with the
absorption of one phonon, whose energy corresponds to the energy difference
between the two levels, as shown in Fig. 5.1. This is the so-called direct process,
which, in order to be efficient requires that an elevated number of phonons of
energy ωmn is present in the lattice. Since ωmn is small for an ordinary EPR
experiment, only at very low temperature is this condition fulfilled. In fact, the
energy density of phonons as a function of x = hωmn/kT is shown in Fig. 5.2. At
high temperature (x ≈ O) the number of phonons available is very small, but on
decreasing T (increasing x), the number of phonons increases sharply. For instance,
for a frequency of 9 GHz, the ratio of the energy densities of phonons at T = 1 K
and T = 10 K is ≈ 82.
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Fig. 5.1. Scheme of the energy levels responsible for the relaxation mechanism: D direct process; 0 Orbach
process; R Raman process

Fig. 5.2. Energy density of phonons as a function of x = hωmn/kT

The characteristic time T1 in which the transitions bring the spin system into
equilibrium is given by:

where Hk is the dynamic hamiltonian responsible for the transition, and the
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summation is over the various modes of vibration. If , (5.2) shows that
 is directly proportional to T.

The above expression has been obtained on the assumption that the transfer of
energy of phonons to the bath is instantaneous. However, since the number of
phonons available is much smaller than that of the spins in an undiluted material,
each phonon must experience a very high number of collisions for every collision
experienced by a spin. This has the effect of considerably reducing the mean
lifetime for the phonon, and consequently to reduce the mean free path of phonons.
At low temperature this may become shorter than the crystal size, thus making the
process of exchange with the bath much longer. This situation is referred to as
“phonon bottleneck”, and it alters considerably the relaxation mechanism. It has
been established that  under these conditions is proportional to:

If ,  is proportional to T2 rather than to T, as required by (5.2).
Beyond the direct one-phonon process, there are several two-phonon processes,

which are more effective at high temperatures, of which the most relevant are
named after Orbach and Raman, respectively. The former consists in the absorption
of a phonon ω1 exciting the spin into the  level, which lies in the phonon
continuum, and the emission of a second phonon ω2 from  to , as
schematized in Fig. 5.1. In this way the phonons which are responsible for the
relaxation have energies  and , much larger than that of the direct process
and are therefore much more numerous than those which allow the direct process
(Fig. 5.2).

The Raman relaxation must be distinguished in a first- and a second-order
process. The former occurs when the dynamic hamiltonian has matrix elements
different from zero between the two levels  and  involved in the relaxation.
The transition between the two can occur via absorption of one phonon ω1 and
emission of a phonon ω2 with the condition that ħωmn = ħω2−ħω1 Phonons of
energy close to the maximum in the diagram of Fig. 5.2 can contribute in this case,
thus making this process much more effective than the direct one at high
temperatures. In the second-order Raman process the two states  and  are
both coupled to an excited state and a transition between them can be induced by
the absorption and emission of two virtual phonons outside the phonon continuum.

Each of these processes has different temperature dependences. The Orbach
process is characterized by:

which becomes simply proportional to exp  if exp .
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The temperature dependence of the Raman process is different for Kramers and
non-Kramers states. For the latter it is found that

while for the former

under the condition that T < Θ. Θ is the maximum phonon frequency available in the
medium, expressed as temperature. In a lattice this corresponds to the Debye
temperature. When T > Θ both for Kramers and non-Kramers ions in the Raman
process,  becomes proportional to T2.

Finally, when the ground state is a multiplet, then the  and  levels in the
EPR transition can be coupled to the other states of the multiplet. In this case the
relaxation process is named after Blume and Orbach. It leads at low temperatures
to a dependence of the type:

In an exchange-coupled pair, by definition, there are a number of electronic
levels with energies comparable to kT. Therefore, these can provide effective
relaxation pathways, which make in general  larger for pairs than for isolated
ions, through two phonon relaxation processes. In fact, the modulation processes,
which are already present for single spins, may become more efficient due to the
presence of new, low lying levels which are generated by the exchange interaction.

The modulation processes of the exchange interaction can be split as usual into
isotropic, anisotropic, and antisymmetric components. Modulation of isotropic
exchange can yield relaxation only to the second order for pairs, but it can be
effective also to the first order for larger clusters. In fact, the selection rules for
isotropic exchange require  and , but for couples only one total
spin state with a given value of S is possible. This condition is no longer met for
larger clusters, where more total spin states with the same value of S can exist.
Anisotropic and antisymmetric exchange, on the other hand, can couple states with
different S and M, therefore, although they are generally much smaller than the
isotropic one, they can produce sizeable effects to the first order in pairs.

With this background we may now examine some examples. The experimental
studies of spin-lattice relaxation have focused essentially on either simple doped
lattices, such as Ir4+ pairs in (NH4)2PtCl6, or materials of biological interest,
among which we choose iron-ferredoxins as interesting examples.
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5.3  Iridium(IV) Pairs

The studies of iridium(IV) pairs constitute a classic in relaxation of exchange-
coupled systems, and we will work them out in detail, following the original
papers by Owens and Yngvesson [5.5, 6]. The temperature dependence of the
relaxation rate for iridium(IV) doped (NH4)2PtCl6 is shown in Fig. 5.3. The
experiments were performed on single crystals, at various doping levels. At low
doping levels  does not depend markedly on concentration, while the
dependence is much more dramatic when the concentration increases. This has been
taken as evidence of an intrinsic relaxation of pairs to the lattice, not involving
cross-relaxation to higher nuclearity intermediates.

The procedure for a theoretical estimation of  requires knowledge of the
ground state and of the excited states which can be admixed into it and of the
normal modes of vibration of the pair. Ir4+ has a ground 2T2g state in octahedral
symmetry, which is split by spin-orbit coupling and low symmetry effects to give a
ground doublet and an excited quartet. These two states can be described by
effective spins S = 1/2 and S = 3/2, respectively. The ligand field states are given
in Table 5.1. Coupling the two doublets yields a singlet and a triplet, corresponding
to the ground manifold of a pair. Excited manifolds correspond to one ion in the 

 state and the other in the excited S = 3/2 state, yielding two S = 2 and two S
= 1 states. At higher energy we find the states generated by the interaction of the
two ions in the excited S = 3/2 states, yielding S = 3, 2, 1, and 0. In order to
determine the relaxation process we must calculate the admixture of the excited
states into the low lying singlet and triplet states via the exchange and the Zeeman
hamiltonian and then evaluate the matrix elements of the dynamic hamiltonian
including the vibrations. Since the energy separation between the total spin states is
large compared to the anisotropic exchange and Zeeman interaction, the correct
functions can be obtained through a perturbation treatment.
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Fig. 5.3. Relaxation data for iridium(IV) pairs in single crystals of ammonium chloroplatinate at 9.5 GHz. The
external magnetic field is in the (111) plane. The sets of data refer to different iridium concentrations: l.2%, 
2.3%; +5.0%; 8.5%.  and  refer to a different crystal orientation. After [5.5]

Table 5.1. Basis functions for the ground manifold of 2T2g of 

The unperturbed ground state and the relevant excited states can be written using
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standard vector coupling techniques (Chap. 3). By using the isotropic and
anisotropic exchange and Zeeman hamiltonians, the singlet and triplet functions of
the ground manifold are modified as shown in Table 5.2, where  is the energy
difference between the S = 1/2 and the S = 3/2 manifolds of the individual ions,
brought about by ligand field effects. J is the isotropic exchange, D is the axial
parameter of anisotropic exchange, defined by the hamiltonian H = D(3SAZSBZ
—SA. SB), and B is the external magnetic field, taken parallel to the z molecular
axis. The line joining the two iridium ions defines the x axis.

There are only five normal modes of the individual ions which are relevant to the
relaxation process (Fig. 5.4), because the totally symmetric one has only diagonal
matrix elements which cannot give rise to relaxation. Therefore, there are ten active
modes for the pair which can be expressed as symmetric, Fk, and antisymmetric,
Gk, combinations of the 21 modes of the individual ions, Ek:

for k = 1 – 5. The magnitudes of the strains associated to the pair modes, fk and gk,
are related to the mean strain, qo, of a lattice wave by:

Table 5.2. Basis functions for the ground manifold of Ir4+ pairsa

aThe functions are labeled according to the individual and total spin states: |SASBSM >. The subscripts a and s
denote antisymmetric and symmetric combinations, respectively, of  and . k  is the
orbital reduction factor of the Zeeman operator. The contributions of  states have been
neglected.
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Fig. 5.4. Normal modes of vibration of octahedral  which are relevant to relaxation processes

The expressions appropriate for bk and ck are given in Table 5.3. (1, m, n) are the
cosines of the propagation direction of a sound wave whose strain of amplitude qo
is directed along a (p, q, r) direction. For a longitudinal wave (l, m, n) is parallel
to (p, q, r), while for a transverse wave (1, m, n) is orthogonal to (p, q, r).

The relaxation of the system is evaluated through a perturbation hamiltonian of
the type:

where Gk and Fk operate only on the electronic coordinates. They depend on the
modulation which is responsible for the relaxation and have the same symmetries
as the corresponding vibration modes. Symmetric perturbations can give matrix
elements between the triplet states, and so even modes give rise to a direct
relaxation process. The antisymmetric perturbations couple states of different
parity, and so they can induce relaxation between the singlet and triplet states
through an Orbach process. For crystal field modulation Gk and Fk can be
conveniently expressed as a function of the operators of the individual ions (Table
5.4). The wavelength of low frequency phonons is much larger than the iridium-
iridium distance, therefore, the two ions vibrate very nearly in phase, and the Fk
(Gk) operators are simply given by the sum (difference) of the operators in Table
5.4.

Table 5.3. bk and ck coefficientsa
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, where a is the iridium-iridium distance and λ is the wavelength of the phonon.

Table 5.4. Crystal field hamiltonian operators corresponding to strains active for relaxation in individual Ir4+

ionsa

aA, B, C, and D are constants which need not be further specified.

Let us consider the direct process for the  transition. In this case
only the symmetric modes are relevant, because the two levels have the same
parity. Matrix elements of the type:

must be evaluated, where  and  are the state vectors of the phonon system
before and after the transition. The expression for the direct relaxation rate
determined by ligand field modulation is given by:

where δ is the energy separation between the two levels, ρ is the number of
phonons of energy in the range δ – δ + dδ, v is the velocity of the sound, and the
indices 1 and t refer to longitudinal and transverse waves, respectively.

The orbital integral is different from zero only for k = 4 and 5; further, only the
excited states admixed by Zeeman and anisotropic exchange are relevant, while
isotropic exchange mixing is in this particular case ineffective. Performing the
integral on the orbital coordinates and averaging the ck coefficients on all the
possible propagation directions, the relaxation rate can be expressed as:
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where P is a constant. If we compare (5.15) with the analogous expression for the
single ion:

we see that neglecting D,

Therefore, as far as the direct process is concerned, the relaxation rate of the pair
induced by crystal field modulation can be slower than that of the single ion.

Modulation of the anisotropic exchange is also symmetric in the spin
coordinates, therefore, it can induce direct relaxation processes between the triplet
states. Since this term is not operative for single ions, its inclusion determines a
faster relaxation for the pair. The hamiltonian can be expressed as:

with D′ = ro δD/δrAB. The contribution of this term to the direct process is similar
to (5.14). The matrix element of the electronic hamiltonian has been estimated
numerically to correspond to ≈ 7 cm−1, in such a way that the contribution of the
anisotropic exchange to the direct relaxation rate is

The triplet state functions can relax also by an Orbach process involving the
singlet level. In this case it is the antisymmetric modes Gk which are relevant,
because they can couple the two spin multiplets of opposite parity. The calculated
relaxation rate is of the type:

The temperature dependence in (5.20) is different from that in (5.4), because in this
case the states involved in relaxation are higher in energy than the state  of the
Orbach process. This is a process which has no counterpart in the single ion. The
experimental data of Fig. 5.3 were fitted with this dependence, using the J value 5.2
cm−1. However, the predicted rate is within a factor of 3 of the observed rate, so
that it was concluded only that it is probable that (5.20) is a major contribution to
the relaxation process.
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5.4  Copper Pairs

Another simple system which has been investigated is that of copper pairs in
zinc(II) bis(diethyl-dithiocarbamato), Zn(dtc)2, single crystals [5.7]. A typical
spectrum of a single crystal containing 5% copper(II) is shown in Fig. 5.5. In
addition to the four intense lines in the center of the spectrum, which arise from
isolated copper(II) ions, two well-resolved groups of septets, arising from copper
pairs, are resolved. The relaxation rate was measured using pulse and spin-echo
techniques. At T < 4K the experimental data were found to follow the temperature
dependence expected for a direct process, with  at 28.8 GHz and 

 at 9.0 GHz, while in the range 4 < T < 12 K the data could be fitted by
an Orbach process:  with δ = 13±1 cm−1. δ
was considered to correspond to the singlet-triplet splitting, the triplet lying lower.

The calculated relaxation rate for the direct process is 2.5 times faster than that
for the single ion, however, the experimental result is that relaxation in the
dinuclear species is 16 times faster than in the single ion. A possible explanation
for this difference lies in the fact that single ions and pairs have different structures.

Another important feature of the relaxation rate of the direct process is its
frequency dependence. In fact, (5.14) requires a direct linear dependence of 
on , while the experimental data on Cu : Zn(dtc)2 rather suggest an inverse
linear dependence. This anomaly has been explained on the basis of the dominant
role of isotropic exchange modulation in weak fields.
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Fig. 5.5. Single crystal spectrum of copper(II) doped Zn(dtc)2 at 4.2 K and 37.0 GHz. After [5.7]

5.5  Two-Iron-Two-Sulfur Ferredoxins

More complicated pairs, which have been studied, however, in some detail, are
met in the so-called two-iron ferredoxins. The structure and properties of these
metalloproteins are described in more detail in Sect. 9.3.2. Here, it is sufficient to
say that in the reduced form they contain pairs with coupled high spin iron(III) and
iron(II). The coupling is antiferromagnetic, yielding a ground  state. Beyond
the natural products there are now also several synthetic model compounds which
have been studied, mimicking several of the properties of the metalloproteins. We
want to mention some relaxation studies here in order to show how they can in
principle provide useful information on the exchange in coupled pairs.

The spin-lattice relaxation time of the ferredoxin from Spirulina maxima has
been studied [5.8–12] with several different experimental techniques in the range
1.8 – 130 K. The data, shown diagrammatically in Fig. 5.6, were fitted by the
equation:
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where  is the integral:

Fig. 5.6. Temperature dependence of the relaxation rate of A Spirulina maxima ferredoxin; B Bacillus
stearotermophilus. After [5.9]

The first term corresponds to a direct bottlenecked process, the second to a Raman,
and the third to an Orbach process. The last has been attributed to a transition to an
excited S = 3/2 level, orginating from the exchange interaction between S = 5/2 of
iron(III) and S = 2 of iron(II). In this way J was estimated to be 166 cm−1.
Therefore, the experimental determination of the spin-lattice relaxation rate can
provide indirect information on the isotropic exchange, a feature which is
particularly important in metalloproteins for which magnetic susceptibility
measurements can be rather difficult to perform. However, it must be mentioned
that the validity of (5.21) has been questioned [5.11], on the grounds that it assumes
a three-dimensional nature of the phonons which are responsible for the relaxation.
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In fact, the protein should be better described by a fractal model [5.13], which
assigns to it nonintegral dimensionality. Following this approach, an alternative fit
of the experimental data was found, which differs from (5.21) essentially in the
Raman term, which requires a temperature dependence of the type T5.666, in
agreement with a dimensionality of the protein d = 1.65.

5.6  Relaxation in Larger Clusters

The main difference between pairs and larger clusters is that while for the former
isotropic exchange modulation cannot provide effective relaxation mechanisms, for
the latter this pathway may also become important. In fact, in a triad, or in a larger
cluster, there may be several total spin states with the same S, and consequently fast
relaxation can occur via modulation of the isotropic exchange. A simple example
where this condition is met is that of three  spins coupled. There are two
doublets thus formed (Fig. 5.7). The transitions between the  and  levels of
the two doublets can be very fast, thus producing a very effective relaxation. This
pathway has been considered to be responsible for the fast relaxation of single ions
iridium(IV) in (NH4)2PtCl6 due to cross-relaxation effects to triads [5.5]. The
relaxation between the doublet spin levels, in an order of magnitude estimate, has
been assumed to be of the type T1

−1 = 2.0 x 108 exp (–5.5/T), much faster than the
relaxation of the corresponding pair.

Some other indirect evidence for this is available in the literature. For instance,
in tetrads of copper ions possessing S4 symmetry, with antiferromagnetic coupling,
the ground state is a singlet, with three excited triplets and a quintet [5.14]. The
EPR spectrum of the S = 2 state has been clearly resolved at room temperature,
while at low temperature the spectrum of the lowest triplet is observed. The
spectra of the other two triplets, which are degenerate, are never observed,
presumably as a consequence of fast relaxation. In this case it is possible that fast
relaxation is induced by transitions within the degenerate levels or also to the
lowest multiplet, which then can be observed only because it is still populated at
low temperature, when relaxation is sufficiently frozen out.

Another feature which can be determined by fast relaxation is the fact that in
several triads of spin  only one signal is observed at all temperatures
[5.15–17]. Since two doublets and a quartet are generated by the exchange
interaction, one should anticipate at least three signals, but only one average signal
is observed. The effective  values have been found to be temperature-dependent,
a fact which has been attributed to the thermal population of the different spin
levels, characterized by different  values.

An example of an accurate determination of the spin-lattice relaxation rate is that
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of four iron-four sulfur ferredoxins from Bacillus Stearothermophilus [5.9]. In Fig.
5.6B the temperature dependence of T1

−1 is shown, which was fitted according to:

Fig. 5.7. Scheme of the energy levels of three coupled  spins

This shows that below 4 K the condition is that of a phonon bottleneck, for
4<T<10K a Raman process is dominant, with a Debye temperature Θ = 60K, like in
the 2Fe-2S protein, while for T > 10K an Orbach process becomes dominant with
an excited level at 173 K. In all the temperature ranges the relaxation rate for the 4
Fe protein is at least an order of magnitude faster than that of the 2Fe protein,
except that in the range where the Raman process is dominant, where there is only a
factor of 3 between the two.

References

5.1    Bertini I, Luchinat C (1985) NMR of Paramagnetic Molecules in Biological Systems, Benjamin/Cummings:
Menlo Park

5.2    Abragam A, Bleaney B (1970) Electron Paramagnetic Resonance of Transition Ions, Clarendon Press,
Oxford

5.3    Stevens, KWH (1967) Rep. Progr Phys 30, 189
5.4    Owen J, Harris E A (1972) in Electron Paramagnetic Resonance; Geschwind, S., Ed.; Plenum Press, New

York London
5.5    Harris EA, Yngvesson KS (1968) J. Phys. Cl, 990
5.6    Harris EA, Yngvesson KS (1968) J. Phys. Cl, 1011
5.7    Al’tshuler SA, Kirmse R, Solovev BV (1975) J. Phys. C, 8, 1907
5.8    Gayda JP, Gibson JF Cammack R, Hall DO, Mullinger R (1976) Biochim. Biophys. Acta 434, 154
5.9    Bertrand P, Gayda JP, Rao KK (1982) J. Chem. Phys. 76, 4715
5.10  Gayda JP, Bertrand P, Deville A, More C, Roger G, Gibson JF, Cammack R (1979) Biochim. Biophys.

Acta, 581, 15
5.11  Stapleton HJ, Allen JP, Flynn CP, Stinson DG, Kurtz SR (1985) Phys. Rev. Letters 45, 1456
5.12  Bertrand P, Roger G, Gayda JP (1980) J. Magn. Reson. 40, 539
5.13  Tarasov VV (1958) J. Am. Chem. Soc. 80, 5052
5.14  Bencini A, Gatteschi D, Zanchini C, Haasnot JG, Prins R, Reedijk J (1987) J Am. Chem. Soc. 109, 2926
5.15  Benelli C, Gatteschi D, Zanchini C, Latour JM, Rey P (1986) Inorg. Chem. 25, 4242
5.16  Banci L, Bencini A, Dei A, Gatteschi D (1983) Inorg. Chem. 22, 4018
5.17  Banci L, Bencini A, Gatteschi D (1983) Inorg. Chem. 22, 2681

167



6 Spectra in Extended Lattices

6.1  Exchange and Dipolar Interactions in Solids

When the number of interacting spins becomes very large, we enter the realm of
extended interactions. These can occur in one-, two- and three-dimensional spaces,
as well as in spaces with fractal dimensions, with an almost infinite number of
possible variations. Historically three-dimensional solids have been treated first,
while the lower dimensional lattices have become of interest only in the last few
years. In the following we will treat first the three-dimensional case, which for
some aspects is less complicated than the lower dimensional cases, and we will
treat the latter only after the former has been fully accounted for.

It is perhaps instructive at this point to define what is meant by a one-, two-, and
three-dimensional magnetic lattice. Let us consider a general spin embedded in the
lattice in which we may be interested. In a one-dimensional lattice this is
“strongly” coupled to two other spins, with a constant J. It may be coupled to other
spins as well, but the relative J′ constants must be much smaller than J. In Fig. 6.1a
we have depicted a possible realization of a one-dimensional lattice.

In a possible realization of a two-dimensional lattice a spin in general position is
bound to four spins with a strong constant J (Fig. 6.1b). All the spins lie
approximately in the same plane. The coupling to spins in other planes is
determined by J’, which is smaller than J. Finally, in a three-dimensional lattice
every spin is bound to more than four spins with a strong coupling constant J. It
must be recalled here that the factor determining the magnetic dimensionality is the
connectivity through exchange-coupling constants, which may or may not
correspond to the structural connectivity.

In order to analyze the spectrum of an extended lattice let us consider first a set
of spins S = 1/2, with isotropic g tensors corresponding to the free electron value
and no hyperfine interaction, arranged in a three-dimensional lattice. In the absence
of any external perturbation other than a static magnetic field, the system is
characterized by the Zeeman hamiltonian:

and the absorption of microwaves of energy  will occur at .
The sum in (6.1) is over all the paramagnetic centers in the lattice. This situation
corresponds to the case when all the spins are uncorrelated and in this limit the
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spectrum consists of one line, characterized by the natural width of the absorption.
The eigenstates of (6.1) can be written as an antisymmetrized product of the
eigenstates Фi(mj) of the individual terms of the Zeeman hamiltonian as:

Fig. 6.1a, b. Scheme of a a one-dimensional; b a two-dimensional lattice

where A is an antisymmetrizer, and the subscripts refer to the sites in the lattice.
The function ψ can be characterized by the total spin component M = ∑imi.

In a real system there are two possible interactions between spins which can be
turned on: one is the magnetic dipolar and the other is the exchange interaction. As
it was shown in Chapter 2 both of them are generally represented by dyadics which
can be decomposed into a scalar, a vector, and a tensor component. In the systems
we are considering the vector components are zero for both the interactions, while
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the scalar is zero for the magnetic dipolar and the tensor is zero for the exchange
interaction. The hamiltonian for the latter can be written as:

and if the distance between paramagnetic centers is large for any couple of spins
the hamiltonian for the former is given by:

where rjk is the vector connecting the sites of the j and k spins and the sums are
extended to the entire lattice.

Hdip can be rewritten according to the relation:

The first term in the parentheses couples states with , the second and the
third states with , and the fourth states with . The effect of
Hdip therefore is that of modifying the eigenstates of Hz, which are given by (6.2),
admixing into them states differing in M by 0, ± 1, and ± 2, respectively. A simple
perturbation treatment, which is valid in the assumption that , gives the
mixing coefficients . Transitions between the total spin states can
be induced by the transverse magnetization operator, Sx = ∑iSix, connecting states
differing in mi by ±1. Therefore, the transitions between the perturbed states will
be, at the c2 order of magnitude, between states with δM = 0, ±1, ±2, and ±3. As a
consequence, transitions centered at ω = 0, 2ωo, and 3ωo, with an intensity
proportional to c2, will add to the main absorption at ω = ωo

The second effect of the dipolar interaction is that of broadening the main line
centered at ω = ωo The reason for this broadening can become intuitively clear if
we build up the infinite lattice by starting from two, three. . . interacting spins. In
the limit of weak exchange two spins yield a singlet and a triplet, for which two
allowed transitions will be observed between the states described by M = + 1 and
M = 0, and M = − 1 and M = 0, respectively. The separation between the two lines,
which are symmetrically spaced around ωo, depends on the direction of the external
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magnetic field, being at a maximum along the line connecting the two spin sites. In
this case the lines are found at ωo±1/2 Ddip. In the case of vanishingly small
exchange other transitions will also be observed, but all of them are symmetrically
deplaced from ωo.

For three spins two doublets and a quartet are formed. The first two yield two
coinciding lines, centered at ωo, the quartet yields three lines, one centered at ωo
and two at ωo± 2/3 Ddip. The process can be repeated indefinitely, but it is clear
that adding one more spin to the cluster yields an increasing number of transitions,
only part of which are centered at ωo, the rest flanking it at different distances from
it. The result is that of a homogeneous broadening of the line. The line shape must
be Gaussian, resulting from the sum of individual, sharper transitions (Fig. 6.2).

Let us now consider the other limiting case, when isotropic exchange alone is
present. Although this may not be a realistic possibility, since if the spins are close
enough to have reasonable exchange interactions they will also have nonzero
dipolar interactions, it is still useful to consider it. The exchange interaction yields
a number of levels, increasing with the number of interacting spins, as is shown for
chains of two, three, and four spins in Fig. 6.3. As long as the various multiplets are
not split in zero field, the resonance will be centered at ωo, and no shift or
broadening will occur. In other words, since Hex commutes with Hz, it will not
affect the spectrum of transitions, while the noncommuting Hdip hamiltonian may
yield broadening.

Now let us move to the general case in which both the isotropic exchange and the
anisotropic dipolar interactions are switched on. Let us further assume that 
. For the tridimensional lattice we are presently considering this is justified by the
fact that a paramagnetic phase is possible only if the exchange-coupling constant is
smaller than the average thermal energy. For one- and two-dimensional lattices this
condition may no longer hold, but we will not consider it here.
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Fig. 6.2. A Gaussian line shape as the result of the sum of individual, sharper transitions

Fig. 6.3. Energy levels and degeneracies for one, two, three, and four  spins

Considering that both the exchange and the dipolar interactions are present
determines two different limit behaviors, corresponding to the predominance of
either the dipolar or the exchange coupling. If , the broadening effect
dominates, and nothing essentially must be added to the considerations we made
above: the line will be Gaussian and the satellite lines will be present. If on the
contrary, , then a completely new situation occurs, in which the lines
are dramatically narrowed, the line widths becoming often comparable to those of
the individual spins embedded in the magnetic lattice.

How this can occur even in the presence of nonzero dipolar interaction can be
qualitatively understood considering that in the presence of the exchange interaction
the spin at a given site sees the spins at the neighboring sites flipping at a rate
proportional to J in frequency units. If J is larger than the average energy of the
dipolar interaction, the latter will be averaged to zero narrowing the signal, much
in the same way as fast motion can average two signals in an experiment in
solution. This regime is referred to as exchange narrowing, and it will be treated in
the next section.

6.2  Exchange Narrowing

A quantitative approach, which puts the above considerations on a firmer basis was
developed initially by van Vleck [6.1], who used the method of moments to
approximate the line shape and subsequently by Kubo and Tomita [6.2] and
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Anderson [6.3]. We will give here a brief outline of the stochastic treatment of the
line shape performed by Kubo [6.4], because it is relatively simple, and, although it
has been substituted by more sophisticated treatments using memory function
formalisms, it is still widely used as a basis for the discussion of the properties in
infinite lattices.

In the stochastic theory of the line shape of an exchange-narrowed EPR line, it is
assumed that the forces acting on a spin system are random in nature. Being so
general the theory applies equally well to exchange-narrowed and broadened lines,
to motionally narrowed lines, and also to NMR experiments.

In the linear response theory, the spin precession in an external magnetic field,
B(t), given by the sum of a static field Bo and of a time-dependent field B1 (t),
which averages to zero, is described by an equation of motion

where ω(t) = γB(t), γ being the gyromagnetic ratio for the considered spin. Equation
(6.6) is just the equation of motion of a randomly modulated oscillator. The random
modulation ω(t) has a definite time average ωo given by:

where the bar on the right-hand side denotes a time average. We can write ω(t) in
the same form as B(t), i.e.,

where . The time-dependent part ω1(t) is called a fluctuation. In
statistical physics fluctuations are characterized by the probability distribution of
their values and by their correlation functions which are defined as the average
value of the product of the fluctuations at the times t and t + τ, respectively, the
average being over the statistical ensemble, i.e., . In the
following we will assume that the process represented by ω1(t) is ergodic and
stationary in time. This means that the probability distribution of the value of ω1(t)
is Gaussian and that the correlation function does not explicitly depend on t. This
last hypothesis allows one to substitute a time average in the ensemble average i.e.,

. Under this assumption (6.6) can be
rewritten as:
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decomposing ω(t) into its time-independent, ωo, and its time-dependent, ω1(t),
parts.

The assembly of spins in the lattice can be considered to form a statistical
ensemble, so that the expectation value of Mx(t) can be evaluated by performing an
ensemble average of the random process ω(t):

where Mx(0) is the initial value of Mx at t = 0.  defines

a function Φ′(t), which is called the relaxation function of the oscillator. It
describes the decay of the transverse magnetization in a frame rotating at the
resonance angular frequency ωo. Equation (6.10) can be rewritten as:

where * indicates complex conjugation.
The fluctuation-dissipation theorem for a linear response system shows that the

resonance absorption spectrum at the angular frequency ω is given by the Fourier
transform of Φ′(t):

where I(ω — ω0) is normalized to unit. The absorption line is centered at ω0 and is
broadened by ω1(t). In other words, the resonance at ω0 is modulated by the time-
dependent perturbation ω1(t).

In order to characterize the modulation process two parameters are used, namely
its amplitude and its correlation time. The former, which measures the magnitude of
the modulation, is defined by:
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 is the average of the square of the modulation process. If we refer to Fig.
6.2,  is the average of the square of the width of each of the individual
resonances which are contained under the envelope of the line. In the hypothesis of
Gaussian modulation of ω1(t) this quantity is equivalent to the second moment of the
resonance, which is defined by:

Clearly, the larger M2, the broader is the overall resonance.
The correlation time of the modulation is defined by:

where ψ(t), the correlation function of the modulation:

ψ(τ) is normalized to M2 for τ = 0. ψ(τ) shows how much the modulation at time t +
τ is influenced, i.e., correlated, by the value of the modulation at time t. In fact, if
ψ(τ) is close to 1, it means that ω1(t + τ) ≈ ω1(t) ≈ ω1(0), while if ψ(τ) is close to 0,
it means that there is no correlation between the two values. In Fig. 6.4 a typical
behavior of the correlation function is plotted. It is seen to decrease rapidly at the
beginning, and then more slowly for the long times. The characteristic time τc
corresponds to the time after which the correlation function is reduced to less than
one-half the initial value. τc is a measure of the speed of the modulation and it tells
us how fast the modulation vanishes. The exchange interaction determines a time
variation of the spin states of the system which is inversely proportional to the
value of the coupling constant in frequency units. Therefore, τc is often taken as:
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Fig. 6.4. Time dependence of the spin correlation function ψ(τ)

In order to characterize the modulation process we must compare  and τc. In
fact, for a modulation ω1 of frequencies to be really effective in broadening a line,
it must have a lifetime, τc, long enough to allow it to complete at least one cycle of
2π of phase before the frequency changes to another state . This condition is
fulfilled if the correlation frequency , which is a measure of how fast the
modulation shifts from a frequency to another, is much smaller than the modulation
amplitude, , i.e., if . This regime is referred to as slow modulation. If the
reverse relation applies, i.e., , the modulation is in the fast regime. In this
case the lifetime τc is so short that the modulation has no time to complete a full
cycle, and is therefore ineffective in broadening the line.

For a Gaussian modulation process in the lattice, the relaxation function Φ′(t) is
related to the correlation function ψ(τ) by:

In order to study the behavior of Φ′(t), it is useful to consider two regions, one in
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which , and the other in which . When , then ψ(t) ≈ ψ(0) = M2,
the integration of (6.18) yields

which means that the relaxation function has a Gaussian time dependence.
On the other hand, when , ψ(τ) ≈ 0, so that the upper limit of the integral in

the exponent of Φ′(t) in (6.18) can be replaced by ∞. It is then easy to see from
(6.18) that the relaxation function has an exponential dependence on t:

The two approximations of the relaxation function are plotted in Fig. 6.5. The
two curves, Gaussian and exponential, coincide for t = 2τc. For a given modulation
amplitude, , in the limit of slow modulation , the Gaussian
approximation of Φ(t) is valid for most of the t range, except for very large t, where
the exponential behavior sets in. The Fourier transform of a Gaussian is also
Gaussian, therefore:

Therefore, the line shape in this approximation is Gaussian with a half-width at
half-height  (Fig. 6.6).

In the fast modulation limit  the condition  holds for most of the t
range, except that close to the origin, and Φ′(t) will be approximated by the
exponential function. The Fourier transform of this function is a Lorentzian function:
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Fig. 6.5. Time dependence of the spin relaxation function Φ′(t): a Gaussian approximation; b exponential
approximation
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Fig. 6.6. Gaussian and Lorentzian line shapes

The half-width of the line in this case is , which is equal to , where τr is
the relaxation time. The half-width in this case is much narrower than in the slow
modulation regime because  since, according to the hypothesis, 

. The Lorentzian curve is also shown in Fig. 6.6.
The narrowing regime cannot extend to the wings of the line shape function. In

fact, from Fourier transform theory it is known that the I(ω — ωo) value is mainly
affected by the value of Φ′(t) in the range t ≈ (ω — ωo)−1: for very large ω — ωo
only the values of Φ′(t) close to Φ′(0) contribute most, and in this region Φ′(t) is
Gaussian and not exponential. Therefore, the narrowed line shape must be
Lorentzian in the center but Gaussian in the wings. The point, where there is the
transition between the two regimes, corresponds to ω – ωo = Δ, i.e., the modulation
amplitude represents a cut-off point for the Lorentzian curve. In principle, an
experimental determination of this cut-off point gives the value of  but in practice
this is difficult to obtain, because the Gaussian behavior sets in at the wings of the
absorption, where the signal-to-noise ratio is unfavorable. On the other hand, the
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broadening regime cannot apply at ω ≈ ωo, because in this case it is the exponential
part of Φ′(t) which determines the line shape, and the curve must be Lorentzian.
However, in slow modulation this condition is limited to a very narrow range
around the center, so that the Lorentzian section is totally undetectable.

The above treatment is very general in nature, and can be applied to any
magnetic resonance experiment, ESR, NMR. . . , with either motional or exchange
modulation.

In the EPR spectra of a magnetic solid the slow dipolar interaction broadens the
lines yielding a Gaussian shape, while the exchange interactions can be fast enough
to bring the system in the exchange-narrowing regime. The speed of the modulation
can be estimated from the frequency of the interaction: in Chap. 2 we have seen that
the dipolar interactions for paramagnetic centers, separated by at least 300 pm, are
typically of the order of 10−1 – 10−2 cm−1, which on a frequency scale corresponds
to 108–109 Hz, while exchange interactions can be at least one order of magnitude
larger than the upper limit of the former. Therefore, the narrowing condition is
fulfilled in many cases, and, since it is exchange-determined, it is called exchange
narrowing. In the following we will focus on this scheme, and will try to express
the ψ(τ) and Φ′(t) functions using the hamiltonians appropriate to the system,
relating the calculated absorption curves to parameters which depend on the nature
of the interaction between the paramagnetic centers.

The exchange-narrowing condition is fulfilled if . In this case we
can split the total hamiltonian, H, into an unperturbed and a perturbed component:

where Ho comprises the Zeeman and exchange hamiltonians, and H′ includes the
dipolar term. Since the two hamiltonians describe largely different frequencies, Ho
being much faster than H′, it is convenient to redefine Φ′(t) in such a way to remove
the fast Zeeman and exchange frequencies and focus on the slow perturbing
frequencies. We will not develop the treatment in detail, but rather will touch upon
the relevant points, trying to underline what is relevant to the physics of the
problem, without entering the mathematics, which is rather involved.

The relaxation function of the system defined by (6.10) can be rewritten using
time-dependent perturbation theory as:

where  is in the interaction representation with respect to the unperturbed
hamiltonian:
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and M + (t) is in the Heisenberg representation with respect to the total hamiltonian,
i.e., M + (t) = exp(iHt/ћ)M + exp(– iHt/ћ). Heisenberg and representation
interaction are the two different schemes for expressing the time dependence of
operators and wave-functions. It is easy to verify that according to (6.25) the time
evolution of  is only determined by the slow, dipolar perturbation. Φ(t) in
(6.24) is related to Φ′(t) by the relation Φ(t) = eiωot Φ′(t).

In order to evaluate Φ(t) two thermal averages must be performed according to
(6.24). The thermal average of the transverse magnetization  relates it
to the intensity of the EPR signal or the static susceptibility via:

where χc is the static magnetic susceptibility for a system with the same individual
spin and the same g tensor of the system under investigation, but following the
Curie law:

χ(T)/χc is a measure of the spin correlations at any temperature: if the ratio is equal
to 1 the susceptibility of the system is that of a Curie paramagnet, and the spins are
totally uncorrelated, while deviations from this value express larger spin-spin
interactions.

The thermal average of the numerator of (6.26) is more difficult to evaluate
directly, therefore, in order to obtain Φ(t) it is necessary to use (6.18), and the
correlation function ψ(τ) defined by (6.16) must be explicitly rewritten expressing
the time dependence of the transverse magnetization through commutators required
by time-dependent perturbation theory as:

where H′(τ) is in the interaction representation:

In the evaluation of ψ(τ) the perturbing dipolar hamiltonian H′(τ) can be
reexpressed in an equivalent way, by considering the fact that Hex commutes with
the Zeeman hamiltonian. The time dependence relative to the latter, for a pair (ij) in
the lattice, is given by:
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with mi = – 1, 1 or 0 for , , and , respectively. If we define M = mi + mj,
we see that M can be 0, ±1, ±2 and the H′(τ) hamiltonian can be rewritten as:

where GM(τ) shows time dependence on the exchange hamiltonian:

GM(0) is that part of the dipolar hamiltonian which induces a change M in the total
spin. Using (6.29 – 32) ψ(τ) becomes:

where gM(τ) is a time correlation function defined as:

which is related to that part of the perturbing hamiltonian which induces a change
M in the total Zeeman quantum number. The sum extends from M = 0 to M = 2, due
to the fact that only bilinear spin-spin terms are taken into account. Historically the
terms with M = 0 are called secular, while the others are collectively called
nonsecular. The total time dependence associated with the Zeeman hamiltonian is
contained in cos(Mωo τ), while the time variation associated with the exchange
interaction is contained in .
In the case of dipolar interactions the functions  are of the type:

where  is a dipolar factor as shown in Table 6.1 and  is a time
correlation function involving four spin operators which are obtained by combining
the spin operators of Table 6.1 for the (ij) and (kl) pairs.

The physical meaning of a spin correlation function  is
that its value is a statement of a probability that at time τ a spin deviation α is on
site i, while at the same time on sites j, k, and 1 the spin values are β, γ, and δ,
respectively. In the Gaussian modulation limit these can be decoupled into products
of two spin correlation functions, allowing for relatively simple calculations. The
decoupling leads to:

Table 6.1. Dipolar factors  and relative spin operatorsa
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a The dipolar factors in units .

and the four-spin correlation functions are evaluated by summing over all the
possible pairs in the lattice. In three dimensions the disturbances move relatively
freely in the lattice, so that the nearest neighbor contributions are dominant and on
increasing the distance between the spins, the correlation goes rapidly to zero.
Matters are different for one-dimensional lattices where any disturbance should
eventually affect any spin in the chain, so that the decay of the disturbance is much
slower. Two-dimensional lattices are intermediate between these two limits. This
has paramount effects on the spin dynamics in lower dimensional systems, as will
be discussed in Sect. 6.4.

In three dimensions ψ(τ) decays in a sufficiently rapid way so that τc is small and
the exchange-narrowing condition is fulfilled. Therefore, it is not necessary to
evaluate ψ(τ) in detail, and only the region close to zero where its value is given by
the second moment is relevant. Equation (6.22) is valid, and the line width can be
easily evaluated calculating the dipolar second moment. In order to do this (6.28)
reduces to:

The average of an operator is given by:

where H is the hamiltonian appropriate to the system and Tr denotes the trace. In
the high temperature limit e−H/kT ≈ 1 and the average is simply calculated as 

 where 1 is the unit operator.
If , then it is possible to evaluate the second moment including only

the secular terms because the other ones couple states differing in M, which, in the
above hypothesis are widely spaced. In other words, the M ≠ 0 terms in (6.33)
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determine a very fast decay of the ψ(τ) function in this limit. Within this
approximation, for a single spin characterized by the quantum number S, we find

where we have used the definition of shift operators. This can be rewritten as:

The indicated sum yields:

Therefore, for a single spin we find

Finally passing to N spins:

In the same way for the numerator of (6.37) we find:

Therefore, (6.37) becomes:

where the sum is performed by choosing one paramagnetic center in the lattice and
including all the other centers in the sum. Due to the  dependence the number of
sites to be included in the sum is relatively small. In (6.39) we used the relation
between the second moments in a field, M2(B), and in a frequency, M2(ω), swept
experiment:

If M2 must be expressed in Gauss and rjk in Å, then (6.39) can be written as:

If, on the other hand, the condition  is relaxed, then the nonsecular
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terms must also be included in the calculation of the second moment. The result is
that M2 becomes:

where ωo and ωe are the Zeeman and exchange frequency, respectively.
If we take the powder average of (6.39) and (6.42) we find that the second

moment calculated including the nonsecular terms is 10/3 larger than the second
moment calculated not including them. This means that nonsecular terms contribute
7/3 of the broadening, the rest coming from secular terms. This larger broadening
effect in the limit of exchange which is much larger than the Zeeman frequency has
been often referred to as the “10/3 effect”.

Table 6.2. Ratios of experimental line widths at various frequencies and calculated J values in two manganese
salts

In the intermediate case, the line width will be frequency-dependent. In fact, at
high frequencies  may hold, yielding lines 10/3 narrower than at low
frequencies, where .

This behavior has been observed, for instance, in a number of manganese
compounds [6.5], such as Mn(CH3COO)2 · 4H2O and Mn(HCOO)2·2H2O. Line
widths were measured in polycrystalline powders at 9, 14, 25, and 36 GHz. The
ratios of the experimental line widths at the various experimental frequencies are
given in Table 6.2. It is apparent that the line width decreases with increasing
frequency, indicating that as ωo increases the ratio ωo/ωe decreases, and the
nonsecular terms become less important. The line width at a given frequency ωo is:

Therefore, measuring it at several frequencies affords the determination of J. The
values calculated in this way are given in Table 6.2.

185



6.3  Additional Broadening Mechanisms

Now it is time to introduce more complications in the above treatment, which for
most readers may already be too involved. In fact, in order to have a tool available
for the analysis of the spectra of real systems it is necessary to take into account
additional broadening mechanisms, such as hyperfine coupling, anisotropic and
antisymmetric exchange contributions, g anisotropy, and crystal field effects.

Starting from g anisotropy, we may consider the frequent case of a lattice with
two magnetically unequivalent sites, which can, for instance, occur in a monoclinic
crystal. The two sites are identical, except for the spatial orientation of the spins.
Let us suppose that the two paramagnetic centers are characterized by anisotropic g
tensors. If the z axis of one of them makes an angle α with the C2 crystal axis, the z
axis of the other one must make an angle –α (Fig. 6.7). Indicating the anisotropic g
tensors for the two different sites with a prime and a double prime, respectively, in
the absence of exchange interactions we should observe two lines at ħω′ = g′μBB
and ħω″ = g″μB B, respectively. If the exchange interaction is strong enough, i.e., if
J > |g′ – g″|μBB/2, we will observe one narrowed line at g = 1/2(g′ + g″). By
referring to a coordinate system [6.6] in which the z axis is in the direction defined
by  B and the x axis is in the plane of g′·B and g″·B, the half-width of
the resulting Lorentzian line can be estimated to be:

Fig. 6.7. Relative orientations of the z axes of the g tensors of two sites in a monoclinic lattice

where z is the number of nearest neighbors. Equation (6.44) has been evaluated
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assuming that the anisotropy effects for the magnetic moment associated with the
oscillating field applied parallel to x can be neglected. The first term in square
brackets is the secular one, and gives a contribution which increases with the
Zeeman frequency ωo because it depends on the external field. The broadening
process is not an indefinite one, however, because when the difference in the
square brackets becomes too large two lines will be observed. This case will be
briefly treated below. The second term is the nonsecular one, which gives broader
lines at low frequencies. Often this term is small, and it can be usually neglected.
As a result the line width is generally estimated to be simply given by:

As expected (6.45) does not give any broadening effect when the two g tensors are
magnetically equivalent.

In the opposite limit of the strong field two lines are observed which show
broadening and shift effects when the exchange frequency becomes comparable to
the difference in the Zeeman frequencies of the two lines. The calculation using the
Kubo-Tomita approach provides the shifts of the two sets of lines:

The coordinate axes in this case are chosen in such a way that z′ and z″ are
parallel to g′·B and g″·B, respectively, and x′ and x″ are parallel to each other and
perpendicular to the z′ – z″ plane. With this choice Θ is the angle between z′ and z″
and the l′s, m′s, and n′s are defined by:

where M is the operating dipole moment.
In the case of two spins , the derivative absorption shape can be expressed

as:
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Γi are the half-widths of the lines, related to the experimentally determined peak-to-
peak line-width by . N is a normalization factor, Bo and Γo are
the averages of the resonance fields, Bi, and of the half-widths Γi [6.7].

In the above treatment the dipolar broadening effect has been ignored. In the case
of weak exchange, when two peaks are resolved, the broadening of each peak can
be assumed to come from the anisotropy effects, and the dipolar broadening can be
neglected. In the strong exchange limit, in the approximation which allowed us to
obtain (6.44) and (6.45), the dipolar contribution is simply additive to that of the g
anisotropy.

The estimation of the dipolar contribution in the presence of an anisotropic g
tensor becomes more complicated, especially in the case of g and Ddip tensors with
nonparallel axes. Given the large number of approximations present in the treatment
we have developed above, it has been customary to approximate the dipolar tensor
using the average, g = (gx + gy + gz)/3, instead of the anisotropic tensor, in all the
cases in which the g anisotropy is not too large, as it is found for instance in
copper(II) compounds.

Another relevant broadening mechanism is provided by hyperfine splitting,
mainly metal hyperfine. In the usual strong field approximation for hyperfine 

, the HIS hamiltonian:

where the sum is over all the nuclei with spin different from zero, can be added in
the perturbation hamiltonian (6.23). The hyperfine contribution to the second
moment has been evaluated for an axial A tensor with principal axes parallel to
those of the g tensor:

where
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Another broadening source can be the anisotropic exchange contribution which is
similar in nature to the dipolar contribution (see Sect. 2.3). As for isotropic
exchange it is customary to consider only the interactions between nearest
neighbors. Ddip and Dex may have different principal axes, therefore, two different
sets of angles will be required to define their contribution, (Fig. 6.8). In several
cases it is assumed that the principal axes of Dex are parallel to the principal axes
of g. The contribution to the second moment from the dipolar and exchange tensors
of the sites n and n + 1 which are the nearest neighbors along the chain to the
reference spin in the limit of quasi-isotropic g and axial Dex and  has
been calculated as:

Fig. 6.8. Coordinate systems for dipolar (x, y, z) and exchange (X, Y, Z) anisotropic tensors

where . The contributions of the spins, which are not nearest
neighbors along the chain, or which belong to different chains, will not have the
exchange contribution, and can be calculated with the same formula as (6.42).

Finally, we may consider antisymmetric exchange. Since in the evaluation of
ψ(τ), according to (6.28), no cross-terms involving the anisotropic and
antisymmetric exchange contributions occur, the antisymmetric exchange
contribution is simply additive. For the computation of the latter a useful formula
is:

189



where  and  are the secular and nonsecular parts, respectively, and FA
is the static spin correlation which depends on the number of nearest neighbors.
The secular and nonsecular contributions can be calculated as:

The Ω’s are given in Table 6.3. The polar angles Θ and Φ are defined in such a way
that the polar axis is parallel to the static magnetic field.

For individual spins  another possible broadening mechanism is
determined by single ion zero field splitting effects. The second moment for an
axial zero field splitting

is given by

where Θ is the angle of the static magnetic field with the unique axis of the zero
field splitting tensor.

Table 6.3. Coefficients for antisymmetric exchange

6.4  Exchange Narrowing in Lower Dimensional
Systems

The reason why the structural and magnetic dimensionality can affect the exchange-
narrowing mechanism is easily understood by recalling that the spin correlation
function  is a measure of the probability that a disturbance (a spin
deviation) is localized on site i for a time τ. This probability is bound to the
mechanism according to which the disturbance can move in the lattice, and it is
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clear that the movement will be much more difficult in one-dimensional than in
three-dimensional exchange-coupled systems, since the number of alternative paths
for a disturbance to move from one site to another is much more limited in the
former. We have already seen that in three dimensions the characteristic time for the
decay of the correlation functions, τc, can be estimated to be inversely proportional
to J, the exchange frequency. In one dimension, however, this time is too short, and
we must explore the behavior of ψ(τ) also beyond this limit, ψ(τ) for a one-
dimensional system is shown in Fig. 6.9. For low τ, ψ(τ) is approximated by a
Gaussian function, like in the three-dimensional case, but beyond τ1 the decay of
ψ(τ) is best approximated by τ−1/2 [6.8]. In a three-dimensional system the
corresponding curve follows a τ− 3/2 dependence, and in general for a d-
dimensional lattice ψ(τ) ∞ τ− d/2 beyond τ1. The origin of the d dependence lies in
the spin diffusion mechanism which is responsible for the decay. An important
consequence of this behavior is that for one- and two-dimensional materials the
integral (6.15) shows divergence for t → ∞, a fact which does not hold for three
dimensions where the decay as τ− 3/2 is fast enough to ensure convergence. The
divergence is more pronounced for one dimension, where it has a t1/2 dependence,
than for two dimensions, where it has a dependence In (t). This means that the
presence of the diffusive tail makes (6.15) and (6.18) invalid for low dimensional
systems.
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Fig. 6.9. Time dependence of the spin correlation function ψ(τ) in a one-dimensional system

The importance of the diffusive tail in the lower dimensional compared to the
three-dimensional case is different for secular and nonsecular terms. This point is
well understood by considering the definition (6.33) of ψ(τ) in which the Zeeman
time dependence is explicitly factored out. In fact, the rapid modulation provided
by cos(Mωoτ) for M ≠ 0 is sufficient to destroy the effects of the long-time
divergence, a case which of course cannot apply to the secular part which, having
M = 0, is time-independent in the rotating frame associated with the Zeeman
interaction.

In order to overcome the above difficulties it is therefore necessary to refine the
theory. We will consider with more detail the one-dimensional case, which is
relatively simple and which has been experimentally observed in a number of well-
behaved examples. We will leave the two-dimensional case to Chap. 10.

Since the standard definition of τc in this case diverges, an alternative one can be
obtained, giving to ψ(τ) the required  dependence, by:

for . Equivalently
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Recalling the definition of Φ(t), we obtain

or

If we compare this result with that of the standard theory of three-dimensional
exchange narrowing, where Φ(t) has a simple exponential dependence on t in the
fast modulation limit as shown by (6.20), we immediately recognize that the line
shape departs significantly from Lorentzian. In fact, the line shape associated with
(6.66) is intermediate between Gaussian and Lorentzian. Experimentally the best
way for discriminating the two curves is to plot the inverse I(ω) curve vs (ω/
Δω1/2)2, where ω1/2 is the half-width: the Lorentzian yields a straight line, while the
other curve has the dependence shown in Fig. 6.10. The Gaussian dependence is
also plotted in Fig. 6.10 for the sake of completeness. The shape of the one-
dimensional line is very close to Lorentzian in the center, but then it decreases more
rapidly. In order to perform the same type of analysis for a normal field swept
experiment with derivative line shapes, it is convenient to plot 

.
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Fig. 6.10. Plot of the inverse I(ω) versus (ω/Δω1/2)2 curve for a Lorentzian and a Gaussian, and the line shape
appropriate to a one-dimensional system

Since a Lorentzian line shape is characteristic of fast exchange and a Gaussian of
slow exchange, we can state that the slow decay of the correlation in one dimension
does not allow the system to reach the fast exchange regime, but leaves it in an
intermediate situation. As a consequence lines will be broader in one-dimensional
compounds compared to three-dimensional systems. In fact, for the latter ΔBpp =
M2/J, while for the former .

If we use (6.39) for the second moment in (6.65) and (6.66) and if we assume
that only dipolar contributions along the chain are relevant, we see that the angular
dependence of the secular term in the linear chain case reduces to (3cos2 Θ – 1)4/3.
Θ is the angle between the chain direction and the external magnetic field.

Since the fast Zeeman modulation washes out the anomalous contributions from
the long-time diffusive tail for the nonsecular terms, the corresponding component
of Φ(t) has the usual simple exponential dependence on t. Therefore, the explicit
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form of Φ(t), taking into account the angular dependence and the frequency
dependence, will be:

where A1, A2, and A3 are numerical constants. A2 and A3 depend on the ωo/ωe
ratio, as in (6.42).

The long-time part of Φ(t) mainly affects the center of the absorption, where ω –
ωo ≈ 0, therefore, this part of the line will be dominated by the secular terms at
most angles. Whenever this occurs the absorption line is intermediate between a
Gaussian and a Lorentzian curve. The main exception to this behavior is observed
for the magic angle, Θ = 54.74°, when the secular term goes to zero, and Lorentzian
behavior is anticipated.

The best practical realization, up to the moment, of one-dimensional behavior,
has been observed [6.9] in [N(CH3)4]MnCl3, tetramethylammonium manganese
trichloride (or TMMC). The crystal structure of TMMC [6.10] is illustrated in Fig.
6.11. Each manganese(II) ion is octahedrally coordinated to six chloride ions. The
octahedra share a face to form a chain. The manganese-manganese distance within
the chain (324.5 pm) is much shorter than the interchain distance (915.1 pm). The
intrachain coupling constant has been found [6.11] to be 9.3 cm−1. The angular
dependence of ΔBpp is shown in Fig. 6.12. The line is broadest parallel to the chain
axis, is at a minimum at the magic angle, and then it increases again to reach a
secondary maximum for Θ = 90°. The experimental points are satisfactorily fit for
ΔBpp = A + B(3cos2 Θ – 1)4/3, in good agreement with theory.

6.4.1  The Effect of Weak Interchain Coupling

In all the above treatments we have neglected the exchange interactions between
chains. In fact, however, neglecting this may induce serious errors and it is now
time to consider its effect. We consider it in the linear chain, but the results can be
extended to the two-dimensional case as well.
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Fig. 6.11. Structure of TMMC as viewed along the magnetic chains. After [6.9]

Fig. 6.12. Angular dependence of the line width of TMMC at K-band and 297 K. Θ is the angle between the
linear chain and the applied field. After [6.9]

In a qualitative way it is easy to understand that interchain coupling, J′, affects
the line shape because it affects the spin autocorrelation function. Indeed, in the
absence of J′ we have seen that the autocorrelation function has a Gaussian
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behavior for short times, followed by a diffusive regime after a time τ1 ∝ J−1. The
inclusion of J′ < J determines now an additional time τ2 > τ1 after which a rapid
decrease of ψ(τ) will be observed. Therefore, including J′ offers in principle the
possibility to the ψ(τ) function to go to zero, avoiding the problems associated with
the long-time diffusive behavior outlined above. In other terms interchain coupling
moves the spin system toward the three-dimensional behavior. How far this can go
depends on the J′/J ratio: for , the one-dimensional limit will be closely
approached, but for J′ ≈ J we go to the three-dimensional case.

Putting this on a quantitative basis is by no means trivial, because in the diffusive
region the Kubo-Tomita approach cannot be used any longer. However, some
fruitful attempts have been made to go beyond this obstacle. The main result which
was obtained [6.12, 13] has been that to estimate τ2, the characteristic time after
which the spin diffusive regime is destroyed by interchain coupling:

The factor (J′/J)1/3, and not (J′/J), which would be expected on the basis of an
analysis of moments, occurs because of the slow decay of the spin correlations by
intrachain diffusion. Since , the 1/3 exponent has a large effect, making the
effective exchange frequency, , much larger than in the (J′/J) limit. This means
that the long-time divergence is effectively cut off, producing a Lorentzian line, like
in the three-dimensional case, also for rather small J′/J ratios.

In conclusion, including J′ yields a more three-dimensional behavior, with
Lorentzian lines and a less pronounced dominance of the secular terms.

6.4.2  Half-Field Transitions

Another characteristic feature of lower dimensional magnets is that a half-field
transition can be observed. The origin of this transition is quite simple. Indeed, in
Sect. 6.1. we showed that the dipolar perturbation yields satellite lines at ω = 0,
2ω0, and 3ω0, beyond the normal resonance at ω0. In the fast exchange regime these
additional lines are effectively pushed under the envelope of the main line, but this
condition does not apply for the lower dimensional cases, where the exchange
interaction is much less effective and the fast exchange regime is actually never
attained. In a field swept experiment the 2ω0 resonance will be observed at 

. Beautiful examples of the half-field line were observed for TMMC and
they showed that the intensity of the satellite line is strongly dependent on the
crystal orientation, while its line width is practically identical to that of the normal
EPR transition. Finally, the intensity of the satellite line is strongly frequency-
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dependent, becoming roughly  as expected.
The angular dependence of the intensity for the usual transversal experimental

setup, i.e., for spectra recorded with the oscillating microwave field orthogonal to
the static magnetic field, in the case of a one-dimensional magnet is of the type
[6.14]:

where Θ is as usual the angle between the magnetic axis and the external magnetic
field and Γ+ (Θ) is the angular-dependent width of the main line. The overall
angular dependence of the intensity of the half-field line in a transverse field
experiment is shown in Fig. 6.13. In practice the intensity shows a sharp maximum
at the magic angle, due to the 3 cos2 Θ – 1 dependence of the denominator, and goes
to zero at both Θ = 0° and 90°, due to the sin2 Θ cos2 Θ dependence of the
numerator.

Another important feature of the half-field transition is that its intensity can be
greatly enhanced compared to the intensity of the main EPR line if a longitudinal
field experiment is performed, i.e., if the oscillating microwave field is parallel to
the static magnetic field. In Fig. 6.14 such an effect is clearly shown: indeed, the
intensity of the half-field line is larger than that of the main line. In this case the
angular dependence of the line intensity is of the type:

and so the maximum intensity must be expected orthogonal to the chain axis, as
experimentally observed.
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Fig. 6.13. Angular dependence of the intensity of the half-field line in TMMC at Q-band frequency. _______
calculated with (6.69), - - - sin2 Θ cos2 Θ. The dots are experimental points. After [6.14]
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Fig. 6.14. Transverse and longitudinal EPR spectra of TMMC at X-band; upper, transverse, lower, longitudinal.
After [6.14]

6.4.3  Temperature Dependence of the Spectra

All the expressions derived in the previous sections are valid in the high
temperature limit, i.e., when  When this condition no longer
applies, then we may expect to observe variations in the line width and also in the
resonance field. On decreasing the temperature from room temperature, but as long
as the high temperature condition can still be considered to apply, the line width is
observed to have small temperature dependence. When the temperature is further
decreased and it approaches the critical point at which three-dimensional order
sets in, then the line width increases quite rapidly (Fig. 6.15).

In some cases it was also observed that the resonance frequency, shifts on
approaching the critical temperature due to short-range order effects [6.15].
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Perhaps the latter is the most striking feature which was observed [6.16, 17] for the
first time for the linear chain antiferromagnets CsMnCl3.2H2O and TMMC. In Fig.
6.16 the temperature dependence of the resonance field of single crystals of
CsMnCl3.2H2O at Q-band frequency is shown. The signal observed parallel to the
chain axis is seen to shift downfield up to 50 mT, while the signals orthogonal to it
shift upfield 50% of this amount at the same temperature. This shift has been
attributed to the magnetic dipole interactions among shortrange ordered spins in the
chains. Indeed, lower dimensional systems cannot undergo a one- or two-
dimensional order at temperatures T > 0 K, but, at sufficiently low temperatures it
is conceivable that small clusters of, e.g., five to ten spins are present which are
strongly correlated to each other. In this way moderate fields are built in the lattice
which add or subtract from the external magnetic field, determining a shift of the
resonance line. In other terms the effect observed here is similar to that observed in
an antiferromagnetic resonance experiment in the ordered three-dimensional state,
the main difference lying in the spacial extention of the correlated spins.
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Fig. 6.15. Temperature dependence of the EPR line in TMMC at X-band. After [6.12]

A quantitative estimation of the resonance shift was performed using classical
spins. The result is:

where || and ⊥ denote parallel and perpendicular to the chain direction,
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respectively,

Fig. 6.16. Temperature dependence of the resonance field for CsMnCl3·2H2O at 34.4 GHz. The field is
parallel to a (+), the chain direction, , and . The curves are calculated. After [6.16]

and

where r is the nearest-neighbor spin-spin distance. Equations (6.71–75) have been
obtained for one-dimensional manganese salts, and indeed the use of classical spins
seems to be more appropriate for S = 5/2 than for S = 1/2. However, they have
been used also for ferromagnetic copper salts, as we will see in Chap. 10.

The relations (6.71–75) can be generalized in the form [6.18]:

where  is the resonance field along the i direction, χi, χj and χk are the one-
dimensional susceptibilities parallel to the i, j, and k directions, and gi is the
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corresponding g value.
Equation (6.76) allows us to predict the sign of the g shifts for ideal one-

dimensional ferro-, antiferro-, and ferrimagnets, respectively. In fact, if we assume
that i is the chain direction for both a ferro- and an antiferromagnet, we must expect
that χi > χj, χk, and consequently that Δ gi is positive; for a ferrimagnet χi < χj, χk, and
Δ gi is negative. This is easily understood by considering Fig. 6.17 which shows the
preferred spin orientations for one-dimensional magnetic materials.

Beyond the ideal antiferromagnetic case, represented by TMMC, a typical
behavior for a one-dimensional ferrimagnet was observed for a compound in which
manganese(II) ions alternate regularly in a chain with stable nitronyl-nitroxide
radicals [6.19]. The coupling between the metal ions and the radicals is
antiferromagnetic, but since the two spins are different, S = 5/2 for manganese and
S = 1/2 for the nitroxide, the moments are not compensated and a one-dimensional
ferrimagnet results. The g shifts at low temperature follow the expected pattern,
with g along the chain smaller than 2, and larger orthogonally to the chain [6.20].

An extension of the treatment using classical spins yields the formula for the one-
dimensional magnetic susceptibility in the assumption of dipolar broadening:

where

a and b referring to the manganese and the nitroxide, respectively.
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Fig. 6.17. Preferred spin orientation in ferro-, antiferro-, and ferrimagnetic one-dimensional materials

In the range of temperature at which a huge shift of the resonance is observed,
also a large increase in the line-width is observed, which presumably has the same
origin. However, at the moment no really satisfactory quantitative agreement has
been obtained, due to the complexity of the required treatment.

The temperature dependence of the line width for  (TN being the
temperature of three-dimensional ordering) has also been the subject of long
discussions in the literature [6.15], and it has not been well settled as yet. In
particular much interest has focused on the observed linear relationship between Δ
Bpp and T and several explanations have been produced. The mechanisms which
have been suspected to be responsible for this have been within the framework of
spin correlations or of the dependence of the various exchange interactions on
temperature, such as phonon modulation of antisymmetric exchange and the
temperature dependence of the isotropic exchange. Since at the moment there seems
to be no definitive agreement in the literature, we will briefly mention this problem
in Chap. 10 where some examples of spectra of low dimensional systems will be
reported.

6.4.4  Frequency Dependence of the Line Widths
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The frequency dependence of the line widths has been studied for linear chain
compounds, at some particular angular setting. Of great interest is the behavior at
the magic angle [6.21], where it has been found that:

In fact, at the magic angle the secular components vanish, and the simple motional
narrowing theory can be used to calculate the line width. The difference with
normal three-dimensional behavior lies essentially in the intensity of the effect,
which is much more pronounced in the low dimensional systems. The experimental
frequency dependence of the line widths of TMMC was fitted with the expression:

with A = 28 ± 3 G, and S = 406 ± 8 G GHz1/2 at 295 K. Attempts were also made
to calculate these two quantities using various decoupling techniques of the
correlation function, with moderate success [6.22–24].

The behavior is completely different for Θ = 90°, i.e., when the static magnetic
field is orthogonal to the chain axis.
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7 Selected Examples of Spectra of Pairs

7.1  Early Transition Metal Ion Pairs

Very detailed EPR spectra have been recorded for manganese(II) pairs in MgO and
CaO. Manganese(II) enters substitutionally the host crystals: at concentrations of
about 1 % appreciable numbers of isolated pairs are found which were
characterized at three frequencies (15.5, 24.5, and 35.5 GHz) over the temperature
range 1.2 to 300 K [7.1].

A typical spectrum of Mn2 +: CaO at 35.5 GHz is shown in Fig. 7.1. Signals are
observed from all the five total spin states: it is apparent that on lowering
temperature the low spin states increase the intensity relative to the high spin states.
The signals shown in Fig. 7.1 are only part of the spectrum, the scheme of which is
given in Fig. 7.2. The temperature dependence of the signal intensity of Mn:MgO
was found to conform to the curves of Fig. 3.3, and the order of the levels is shown
in Fig. 7.3. The levels deviate considerably from a Landé interval rule (Table 7.1),
a result which was explained by including biquadratic terms. The levels on the left
in Fig. 7.3 are calculated only with bilinear exchange, while those on the right,
which correspond to a good approximation of the experimental data, are obtained
including a biquadratic exchange constant j, such that j/J = 0.05. The effect of
biquadratic exchange on the energy separations is quite dramatic, according to the
relation:

The biquadratic term may have its origin from both an intrinsic higher order
exchange and by exchange striction as discussed in Section 2.4. Beyond the
departure from Lande interval rule biquadratic exchange has been considered to be
responsible also for the departure of the anisotropic exchange parameters from the
simple behavior expected using Eq. (3.21). The experimental D and E parameters
for the various spin states are given in Table 7.1. According to Table 3.3, the Di
parameters should be given by:
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Fig. 7.1. A part of the spectrum of manganese(II) pairs in CaO recorded at Q-band frequency with the
magnetic field in the  direction at various temperatures. After [7.1]
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where DMnMn is the anisotropic spin-spin and DMn the single ion zero field splitting
tensor. It is easy to verify that there is not a single set of parameters DMnMn and
DMn which satisfy (7.2). Attempts were made to rationalize the experimental data
using an exchange striction model, but the system becomes in this way so heavily
parametrized, that it seems safer to stop here and to consider that experimentation
shows how the simplest possible model can provide only a first approximation of
the real system.

CsMgCl3, CsMgBr3, and CsCdBr3 are host lattices which have been extensively
used for recording EPR spectra of paramagnetic impurities [7.2, 3]. They all have
the so-called hexagonal CsNiCl3 structure (Fig. 7.4), which can be described as an
array of infinite parallel linear chains composed of [MX6]4– octahedra sharing
opposite faces. When trivalent cations, such as chromium(III) and molybdenum(III)
are doped into these lattices, an extraordinary tendency of the ions to cluster into
pairs is observed, even at concentrations of 10−3 M. This behavior has been
attributed to the necessity of charge compensation: two trivalent ions occupy two
sites of two bivalent ions only leaving a vacancy in between them (Fig. 7.4).
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Fig. 7.2. Angular dependence of the resonance fields of manganese(II) pairs in CaO. After [7.1]

210



Fig. 7.3. The energy levels of mangariese(II) pairs in MgO: a without biquadratic exchange terms; b including
biquadratic exchange terms

Representative spectra of chromium(III) pairs in CsMgCl3 are shown in Fig. 7.5.
The external magnetic field is parallel to the trigonal axis of the chain. The signals
have been attributed to transitions within the total spin states S = 3,2 and 1 which
originate from the interaction of two S = 3/2 ions. The analysis of the spectra of
these multiplets can be performed by considering separately the various total spin
multiplets. In this case the analysis requires the inclusion of second-order terms in
the spin hamiltonian for S = 2 and of fourth- and sixth-order terms for S = 3. The
usual analysis (Table 3.3) suggests that the following relations must hold for the
zero field splitting parameters:

Table 7.1. Experimental values of the zero field splitting parameters of manganese(II) pairs in MgOa

D1 –0.776(10)
E1 –0.149(5)
D2 –0.182(2)
E2 –0.024(3)
D3 –0.084(1)
D4 –0.050(1)
D5 ______

aValues in cm−1, estimated errors in parentheses. The subscripts refer to the total spin state.
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Fig. 7.4. Perspective drawing of a linear chain in the hexagonal CsNiCl3 structure, showing charge-
compensated stabilized pairs

Fig. 7.5. Q-band EPR spectrum of chromium(III) pairs in a single crystal of CsMgCl3. The external magnetic
field is parallel to the hexagonal axis. Σ indicates the total spin state. After [7.3]

Again in this case the three equations cannot be solved exactly, but average values
of DCrCr and DCr can be calculated as: DCrCr = –0.0140 cm–1, DCr = –0.224 cm–1.
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A more rigorous procedure can also be used by diagonalizing the 16 x 16 matrix
obtained using the direct product basis of the two S = 3/2 states. In this case a more
accurate reproduction of the transition fields of the S = 2 state could be obtained,
so that it was found at 297 K, J = 0.80 cm−1, DCrCr = –0.0079 cm–1, DCr = –0.221
cm–1, while at 77 K, J = 0.96 cm–1, DCrCr = –0.0081 cm−1, DCr = –0.222 cm−1.
Similar results were obtained also for molybdenum(III) pairs and for mixed
chromium(III)–molybdenum(III) pairs [7.4]. A typical spectrum is shown in Fig.
7.6. The isotropic exchange of the Cr–Mo pairs in CsMgCl3 at 77 K was
determined to be 1.61 cm−1, an intermediate value between 0.96 cm−1 for Cr–Cr
and 2.75 cm−1 for Mo–Mo pairs.

Quite often fluid solution spectra of pairs comprising two S = 1/2 transition
metal ions cannot be recorded, because the zero field splitting of the triplet is too
large. One distinct exception to this rule is provided by oxovanadium(IV) dl-
tartrate whose room temperature solution spectra are shown in Fig. 7.7. The 15
lines are determined by the hyperfine interaction with two equivalent 51V, I = 7/2
nuclei, and the splitting is nearly one-half that expected for a mononuclear
oxovanadium (IV) species. Frozen solution spectra of the same compound yielded
D = 0.0334(2) cm−1 [7.5].

Fig. 7.6. Q-band EPR spectrum of a CsMgCl3 crystal doped with Cr3+ and Mo3+ at 77 K. The external
magnetic field is parallel to the c crystal axis. C indicates chromium(III) pairs; M molybdenum pairs; and X
chromium-molybdenum pairs. R is DPPH. After [7.4]
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Fig. 7.7. X-band EPR spectrum of sodium oxovanadium(IV) dl-tartrate at room temperature. After [7.5]

Vanadium(II) ions (d3 configuration, S = 3/2) can be doped into KMgF3, and a
measurable amount of pairs is formed, which can be investigated by EPR
spectroscopy [7.6]. The ions are coupled antiferromagnetically to give S = 3, 2, 1
and 0, with J = 4.5 ± 1.0 cm−1. Surprisingly, only the signals of the S = 2 total spin
manifold could be detected. This has been explained by the fact that crystal field
effects on the S = 2 state are zero, as shown by (7.3), while they are different from
zero for the other total spin multiplets. The observed zero field splitting parameter,
D = –0.0339 cm−1 is 35% larger than the classical dipolar value. This discrepancy
has been attributed to covalency effects which actually delocalize the unpaired spin
density also on the bridging ligands.

Interesting examples of exchange interactions transmitted at long distances are
provided by dinuclear dicyclopentadienyl titanium(III) complexes. The general
formula for all these compounds is schematized in Fig. 7.8, where B is just an
indication for some bridging moiety. Among these one can mention cyanurato and
uracilato groups [7.7], manganese and zinc dichloride [7.8], pyrazolate,
biimidazolate, and bibenzimidazolate anions [7.9], dicarboxylic acid dianions
[7.10–12], dianions of thymine, 3,6-dihydroxypyridazine, and 2,3-
dihydroxyquinoxaline [7.13]. A typical spectrum is shown in Fig. 7.9, with six
transitions corresponding to a rhombic hamiltonian. In this case the bridge is the
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oxalato anion. The observed zero field splitting parameter, D = 0.0116 cm–1,
corresponds to a metal-metal distance of 597 pm according to the assumption of
dominant dipolar interaction. The calculated value compares well with 585 pm
expected for two titanium ions bridged by an oxaloto ion. The fact that the zero
field splitting tensor is essentially dipolar for these complexes is not surprising,
given the small effect of the spin-orbit coupling on titanium(III), as evidenced by
the g values close to 2. With this procedure metal-metal distances as long as 1080
pm were estimated.

Fig. 7.8. Scheme of dinuclear dicyclopentadienyl titanium(III) complexes

Fig. 7.9. Q-band spectrum of oxalate bridged dicyclopentadienyl titanium(III) dimers. Upper, experimental;
lower, simulated. The noise in the simulated spectrum is a computational artifact. After [7.12]
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7.2  Copper Pairs

Copper is by far the metal ion which has been most often investigated through EPR,
and the pairs formed by it are no exception. We have already given several
examples, in particular using them in order to obtain correlations between the spin
hamiltonian parameters and the electronic structure of pairs.

In this section we will provide more examples which can be helpful in shedding
light on some particular feature of the EPR spectra of pairs. A useful starting point
may be given by complexes of the copper acetate hydrate type, which was studied
at the very beginning of the applications of EPR spectroscopy. Indeed, by
interpreting the spectra Bleaney [7.14] correctly suggested the dimeric nature of the
compound, which was subsequently confirmed by X-ray crystal structure [7.15].
After that hundreds of derivatives with similar structures have been reported and
characterized by EPR. In most of these the spin hamiltonian parameters are quite
similar, with g|| ≈ 2.3, g⊥ ≈ 2.08, D ≈ 0.34 cm−1, E/D ≈ 0.01. A typical spectrum
recorded at Q-band frequency is shown in Fig. 7.10. The actual compound is
copper chloroacetate hydrate, which was chosen because it gives spectra with
many well-resolved features. The transition fields can be calculated using the
following equations:
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Fig. 7.10. Polycrystalline powder EPR spectrum of copper(II) chloroacetate hydrate

Beyond the six allowed ΔM = ± 1 transitions, also two forbidden ΔM = ± 2
transitions are clearly resolved. One corresponds to the absorption of one photon
which induces a transition between the two M = + 1 and M = − 1 levels, and the
other, indicated as double quantum transition, corresponds to the absorption of two
quanta. This transition can be observed at relatively high microwave power, when
the separations between the M = − 1 and M = 0 and the M = 0 and M = 1 levels are
about equal.

In the spectra of copper(II) pairs quite often one observes, beyond the transitions
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within the triplet, also features corresponding to simple S = 1/2 species. These
spectra are often referred to as “mononuclear” impurities, and may originate from
defective sites in the lattice. This phenomenon has not received much attention,
although it is potentially very important in order to characterize the defects in
molecular solids. Indeed, single crystals of molecular materials can host widely
different species, as has been shown through EPR spectroscopy in the following
example.

[(dien)Cu(ox)Cu(tmen) (H2O)2] (ClO4)2 is an asymmetric dinuclear copper(II)
species (dien = diethylenetriamine; ox = oxalate; tmen = N, N, N′, N′-
tetramethylethylenediamine) with the structure illustrated in Fig. 7.11, and a
coupling constant J = 75.5 cm−1 [7.16]. The EPR spectra of this compound at high
temperature are broad and ill-characterized, but at 4.2 K, when the magnetic
susceptibility data clearly indicate that the dinuclear species is in the ground singlet
state, a beautiful triplet spectrum is resolved [7.17]. In Fig. 7.12 a typical spectrum
of a single crystal is reported. The two septets are attributed to the – 1 → 0 and
0→1 transitions, split by the interaction with two equivalent copper ions. The
complete analysis of the spectra yielded |D| = 0.0163 cm−1, E/D ≈ 1/3, with the
principal directions which cannot be reconciled with any structural feature of the
[(dien)Cu(ox)Cu(tmen) (H2O)2]2+ cation. The explanation of this behaviour is that
in this lattice, during the synthesis of the compound, beyond the asymmetric species
[(dien) Cu (ox) Cu (tmen) (H2O)2]2+, also a symmetric one is formed. Since [(dien)
Cu (ox) Cu (dien)]2+, shown in Fig. 7.11 is independently known to exist and to
have a very weak coupling between the two copper ions, it seems extremely
feasible that this is indeed the species which is formed in the lattice and which
appears at low temperature when the host compound becomes diamagnetic.
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Fig. 7.11. Schematic representation of the structures of [(dien)Cu(ox)Cu(tmen)(H2O)2]2+ and

[(dien)Cu(ox)Cu(dien)]2+
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Fig. 7.12. Single crystal EPR spectrum of [(dien)Cu(ox)Cu(tmen)(H2O)2](ClO4)2 at X-band frequency and 4.2
K. After [7.17]

An interesting example of the use of EPR in determining weak exchange
interactions has been reported for the compound [Cu2(tren)2(OCN)2](BPh4)2, where
tren is 2,2′,2″-triamino triethylamine. The structure of this compound is shown in
Fig. 7.13 [7.18]. The EPR spectra are characteristic of magnetically nondilute
copper(II) complexes, but, beyond the usual absorption in the g = 2 region, they
show additional features both at high and low field as shown in Fig. 7.14. These
have been assigned to transitions involving singlet and triplet levels, as indicated
by the energy level scheme of Fig. 7.15. The two transitions are expected to occur
at B = Bo ± J/gμB, where Bo is the resonance field of the normal ΔM = 1 transition.
Therefore, measuring B allows the direct determination of J. In the present case it
has been found to depend on temperature, ranging from 0.09 to 0.16 cm−1. A more
complete discussion of the conditions under which these “forbidden” transitions
can be observed is reported in Sec. 7.4.
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Fig. 7.13. Molecular structure of the dimer cation [Cu(tren)(OCN)]2. After [7.18]

Fig. 7.14. Temperature dependence of the X-band EPR spectrum of [Cu(tren)(OCN)](BPh4). After [7.18]

The single crystal EPR spectra of [Cu2(Me5dien)2(N3)2](BPh4)2 are instructive
for illustrating the role of second-order zero field splitting effects determining the
hyperfine splitting [7.19]. The compound contains dinuclear units [7.20], with the
structure shown in Fig. 7.16, with a coupling constant of 13 cm−1. The crystal is
monoclinic, with the dinuclear units in general position, therefore, four ΔM = ± 1
transitions are expected for a general orientation of the static magnetic field (two
fine structure transitions for either magnetically nonequivalent site). The single
crystal spectrum corresponding to the static magnetic field in the (100) plane is
shown in Fig. 7.17. Apparently there are four transitions, three of which are split
into seven components, the splitting corresponding to 37, 85, and 53 G,
respectively, on passing from low to high field. The third transition from low field
does not show any measurable splitting. It must also be noted that the spacings of
the hyperfine components are not equal within one transition and the values given
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above are just average values. The observed features must be assigned to the fine
structure components of the two sites present in the lattice. Under these conditions
it is difficult to recognize the two pairs of fine structure transitions. However, a
complete analysis of the spectra showed that the two outermost signals belong to
the same transition, as do the internal ones. The marked difference in the hyperfine
splitting between the two components of the fine structure depends on the second-
order mixing of the M = ± 1 states within the M = 0 level, due to second-order zero
field splitting effects [7.21]. This effect, in turn, depends on the ratio D/hν as
confirmed by the Q-band spectra which show a more regular behaviour, with much
smaller differences in the hyperfine splitting of the two fine structure components.

Fig. 7.15. Scheme of the energy levels, allowed EPR transitions, and EPR spectrum in the limit of the
exchange-coupling constant comparable to the microwave quantum. After [7.18]
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Fig. 7.16. Scheme of the coordination environments of the copper ions in [Cu2(Me5dien)2(N3)2](BPh4)2 and
orientation of the g and D tensors in the molecular frame. After [7.19]

Similar effects of large differences in the hyperfine splitting have been observed
also in polycrystalline powder spectra [7.22]. For instance, in the spectra of Fig.
7.18 the parallel high-field feature has markedly different splitting compared to the
low-field one. This behaviour is due to the misalignment of the A and D tensors.

An interesting example of the resolution of weak interdimer interactions via EPR
has been reported for copper(II) maleonitriledithiolate complexes, [Cu(mnt)2]2−.
When the methylene blue cation, MB+ is used as a counterion, a compound of
formula (MB)2Cu(mnt)2. acetone is obtained [7.23]. The anions are paired and the
pairs are stacked along the c crystal axis. The intrapair Cu–Cu distance is 711.5
pm, and the shortest interpair distance is 1074.3 pm. The coupling within the dimer
is antiferromagnetic, J = 5.2 cm−1. A typical EPR spectrum of a single crystal is
shown in Fig. 7.19. The 14 internal lines are attributed to two fine structure
components of the S = 1 state, each of which is split into seven by the copper
hyperfine interaction with two copper nuclei. The two outermost transitions in Fig.
7.19, were attributed to pairs of dimers which are present in the lattice. The
effective hamiltonian for these pairs can be written as:
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Fig. 7.17. Single crystal X-band EPR spectrum of [Cu2(Me5dien)2(N3)2(BPh4)2. After [7.19]
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Fig. 7.18. X-band polycrystalline powder EPR spectra of bis (N-methyl salicylideneiminato) copper(II): a in
toluene at 77 K; b and c polycrystalline powders at room temperature and 77 K, respectively. After [7.22]

where J is the intra- and J′ is the interdimer exchange-coupling constant. The energy
levels of the pair of dimers can be schematized [7.24] as shown in Fig. 7.20. The
lowest state corresponds to the two dimers in the ground singlet, the first excited
state has one dimer in the singlet and the other in the triplet, while the highest state
corresponds to both dimers in the triplet state. The interaction between the two
triplets yields a singlet, a triplet, and a quintet. The S = 0 and S = 2 states can be
admixed by either interdimer zero field splitting and hyperfine coupling, while the
triplet remains as a pure state. Therefore, the interdimer transitions can be labeled
as triplet and mixed singlet-quintet, respectively.
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Fig. 7.19. EPR spectrum of (MB)[Cu(mnt)2] with magnetic field in an arbitrary orientation. After [7.23]

The probability of observing n neighboring dimers in the triplet state is given by:

where n = 1, 2 and

The ratio P2/P1 is a very sensitive function of temperature as shown by the
experimental spectra in the range 2–4.2 K (Fig. 7.21). The spectra at 2 K only show
the isolated triplets. The splittings of the bands are due to the two different copper
isotopes and they are washed out at higher temperatures due to the broadening of
the bands. Eight transitions are observed because the zero field splitting in this
orientation is equal to the hyperfine splitting. When the temperature is increased,
additional absorptions are neatly resolved, which were attributed to the pairs of
dimers. The complete analysis of these spectra showed that they are given by pairs
of dimers clustering along the a axis. The isotropic interdimer coupling was found
to be negative (ferromagnetic) and < 5 x 10–4 cm–1 in absolute value. The
interdimer zero field splitting was assumed to be given by the point-dipolar
approximation.
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Fig. 7.20. Scheme of the energy levels of pairs of dimers present in (MB)[Cu(mnt)2]. After [7.24]

7.3  Heterometallic Pairs

In this section we focus on pairs containing different metal ions. Studies on such
systems are much less numerous than those on homonuclear pairs, although in the
last few years they have attracted increasing interest [7.25–27]. We have already
reported some examples in Sect. 7.1, and will cover here others, without any
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attempt to be completely exhaustive.
A relatively numerous class of heterometallic pairs includes high spin nickel(II)

and copper(II) ions. In Table 7.2 are shown the g values for some pairs, and the g
values calculated for the nickel(II) centers using the coefficients of Table 3.3 and
the g values of the copper centers. Since the experimental spectra correspond to the
S = 1/2 total spin state, the g values of the pair are given by g = 4/3 gNi – 1/3 gCu.
In Sect. 3.6 we showed, however, how the single ion zero field splitting can induce
variations in this scheme. An indirect check of the goodness of the simple formula
is provided by the calculated g values for the nickel center: for instance, for an
octahedral complex the g tensor is expected to be quasi-isotropic, and close to 2.2,
and indeed the values in Table 7.2 appear to conform to this prediction. The
calculated g tensors of square pyramidal and trigonal bipyramidal complexes are
much more anisotropic than those of octahedral complexes. In particular, very
anisotropic values are calculated [7.34] for nickel in Cu-Ni pairs obtained in
bis(N,N-bis(2-diethylamino)ethyl) (2-hydroxyethylamino-O)dinickel(II)
diperchlorate [7.35], Ni2 (bdhe)2(ClO4)2. Although these values may reflect the
low symmetry of the complexes, it can also be suspected that the zero field splitting
of the single ions can play some role. For a trigonal bipyramidal nickel complex the
ground state (C3v symmetry) is orbitally degenerate 3E, therefore, a large interplay
of the Jahn-Teller effect and low symmetry components can be suspected.
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Fig. 7.21. Experimental single crystal EPR spectra of (MB)[Cu(mnt)2] in the range 2–4.2 K, with the static
magnetic field parallel to a. After [7.24]

Table 7.2. g values for nickel(II) complexes calculated from the spectra of Cu-Ni pairs
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That this can be the case is confirmed by the spectra of the analogous cobalt(II)-
nickel(II) pairs which correspond to transitions within one Kramers doublet, with g
values g1 = 3.4, g2 = 0.8, g3 = 0.6. These values cannot be reproduced with any
simple formula of the type (3.34), and must reflect a much more complicated
situation.

More tractable spectra were recorded [7.28, 29] for Co–Ni pairs in bis(1, 5-
dipheny1-1,3,5-pentanetrionato) tetrakis (pyridine) dimetal(II), M2trik(py)4, and
diaquo (1,4-dihydrazionphthalazine) metal(II), M2(dhph) (H2O)4, whose structure
is schematized in Fig. 7.22. The EPR spectra recorded at 4.2 K show transitions
within one Kramers doublet with gz = 2.1, gx = 1.2, gy = 0.3 and gz = 0.6, gx = 0.9,
gy = 2.1, respectively. The x, y, and z directions for the two complexes are shown
in Fig. 7.23. In octahedral symmetry cobalt(II) has an orbitally degenerate 4T1g
state, which is split by spin-orbit coupling and low symmetry components to yield a
ground Kramers doublet. The simplest approach to rationalize the observed g
values is to consider the ground Kramers doublet as an effective S = 1/2 spin and
couple it with S = 1 for nickel. In this frame the g values of the pair might be
associated with the total spin S = 1/2. However, use of the coefficients of Table 3.3
fails to give reasonable values, when the g values of the nickel and cobalt center,
obtained from the spectra of the Cu-Ni and Co-Zn pairs, respectively, are used. A
more sophisticated approach takes into account the orbital degeneration of the
cobalt(II) ion, through a hamiltonian
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Fig. 7.22. Scheme of the structure of M2(trik)(py)4 and M2(dhph)4(H2O)4

Fig. 7.23. Reference frames for M2(trik)(py)4 and M2(dhph)4(H2O)4

where HCo and HNi are the hamiltonians appropriate to the single ion cobalt(II) and
nickel(II) centers, including spin-orbit coupling and low symmetry effects. HCoNi is
the interaction hamiltonian, which, in the assumption of C2v symmetry for the pair,
can be written in the form [7.36] of Eq. (2.61):

where the sum is over the irreducible representations Γ of the symmetry group of
the pair, spanned by the direct product A2g ⊗ T1g (A2g is the orbital symmetry of the
ground state of octahedral nickel(II)). By diagonalizing the hamiltonian matrix of
(7.16), including also the Zeeman terms, it is possible to fit the experimental g
values. In order to reduce the number of parameters to a minimum, those relative to
HCo, HNi, and to the Zeeman hamiltonian were obtained independently from the

231



analysis of the spectra of the Cu–Ni and Co–Zn pairs. Therefore, only the JΓ

parameters remain to be fitted. They were found to be: JA1 = 4(4) cm–1, JA2 = 45(5)
cm–1, JB2 = 45(5) cm–1 for CoNi(trik) (py)4 and JA1 = JA2 = JB2 = 30(10) cm–1 for
CoNi(dhph) (H2O)4. The JΓ parameters can be decomposed into a sum of pathways
involving different magnetic orbitals: in particular, JA1 contains contributions from
xy orbitals on cobalt interacting with x2 – y2 orbitals on nickel. The smaller value
found for JA1 in CoNi(trik) (py)4 may be justified by the ferromagnetic component
associated with this exchange mechanism (see the Goodenough-Kanamori rules of
Sect. 1.2). On the other hand, in CoNi(dhph) (H2O)4 this mechanism becomes less
efficient, because the two metal ions are now separated by a polyatomic bridge,
and JA1 becomes very similar to the other two.

An interesting feature of the spectra of heteronuclear pairs is that the presence of
a fast relaxing ion close to another one, to which it is weakly coupled, can result in
a substantial sharpening of the signals of the latter. This phenomenon has been
observed both in infinite lattices doped with paramagnetic impurities, and in
discrete dinuclear complexes. For instance, when oxovanadium(IV)is doped into
K2Co(SO4)2.6H2O, the spectrum shown in Fig. 7.24 is observed at room
temperature [7.37]: the lines are as narrow as they would be expected to be in a
diamagnetic lattice, and the 51V hyperfine is clearly resolved. The interpretation of
this interesting phenomenon is bound to the exchange-narrowing mechanism of
Chap. 6. The paramagnetic impurity undergoes dipolar interactions by the
neighboring cobalt(II) ions, but, since the spin lattice relaxation of the latter is very
fast , the dipolar field is randomly modulated at a frequency
which is much larger than the perturbation and the narrowing regime is obtained. A
confirmation of this interpretation comes from the broadening of the lines of the
paramagnetic impurity on decreasing temperature: when the spin lattice relaxation
of the cobalt(II) ion becomes slower, the narrowing regime is no longer obtained.

An interesting example of a triplet spectrum in a heterodinuclear complex is
provided by CuVO(fsa)2en.CH3OH, where (fsa)2en4– is N,N′,-(2-hydroxy-3-
carboxybenzilidene)-1,2-diamino ethane [7.38]. This compound has already been
mentioned in Chapter 1 as an example of a moderate ferromagnetic coupling. Its
powder EPR spectrum has been interpreted with |D| = 0.24 cm–1 and E/D ≈ 0.17.
Since the copper-vanadium distance seen in the crystal structure is 298.9 pm, the
dipolar value of D is not expected to exceed 0.1 cm–1, therefore, even in this case
exchange contributes significantly.
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Fig. 7.24. Room temperature single crystal X-band EPR spectrum of oxovanadium(IV) doped
K2Co(SO4)2·6H2O. After [7.37]

7.4  Organic Biradicals

Biradicals are formed by the linkage of two molecular fragments, each containing
one unpaired electron. Several different types of such molecules have been
synthesized and characterized, but perhaps the most numerous class is that of bis-
nitroxides, and we will refer mainly to these in the following. An excellent review
of their properties has been given by Luckhurst [7.38], and we will often refer to
this review.

In the study of nitroxide biradicals it is mainly the fluid solution spectra which
are relevant, due to the possible use of these molecules as spin probes, although
data are available also for spectra in oriented matrices. The scalar hamiltonian can
be written as:

In (7.18) it was assumed that the hyperfine interactions are small compared to the
electron Zeeman splitting and nonsecular hyperfine terms were neglected.

The electronic states in (7.18) can be grouped as singlet and triplet. If the two gi
values are identical, and the hyperfine can be neglected, the total spin S is a good
quantum number, and only transitions within the triplet state can be detected.
However, if at least one of the above conditions does not apply, then the two total
spin levels with M = 0 can be admixed, and the number of observed transitions
increases. Assuming that the gi values are identical, the resonance fields are given
by:
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where A is in gauss, m = m1 +m2, and δm = m1 – m2, m1 and m2 are the nuclear spin
components,

R = J/A and k can be either ±1. The upper sign applies to the transitions involving
the M = 0 state which has a more triplet character, and the lower sign to those
involving a more singlet character. The relative intensities of the transitions are
given by:

For nitroxides the largest hyperfine interaction is with 15N, I = 1. A stick plot
showing the transition fields and the relative intensities for various values of R is
given in Fig. 7.25. When R = 0 three transitions, corresponding to the interaction of
the unpaired electrons with each of the three mi components, are observed. For 

, transitions can be observed, 9 of the “triplet” and 6 of the
“singlet”. The singlet transitions are separated from the others by roughly the
exchange energy, so that for R > 4/3 all the singlet resonances lie outside the main
spectrum. On increasing R the intensities of the singlet transitions decrease until
eventually only the triplet transitions can be observed. For R → ∞ the spectrum
shows five lines with relative intensities 1:2:3:2:1, as expected in the strong
exchange limit. Two representative examples of spectra are shown in Fig. 7.26. The
spectrum of Fig. 7.26a shows the resolved lines, from which the exchange integral
can be calculated [7.39].

It must be stressed here that the above ratios of intensities are only valid if J is
time-independent, while matters can be much different in the case when J is
modulated by some time-dependent perturbation [7.40]. This can occur, for
instance, for a flexible biradical such as the one shown in Fig. 7.27. The
intramolecular motion of the biradical yields nitroxide-nitroxide distances which
are time-dependent, and consequently time-dependent J. According to (7.21), the
transitions which are most affected by the R ratio, i.e., by the time modulation of J,
are, in order of increasing effect, the ones for which δm = ± 1 and those for which
δm = ± 2. On the other hand, the transitions with δm = 0 are independent of R.
Therefore, in a qualitative way we may predict that the line width of the δm = 0
transitions are unaffected by the modulation of J, while the δm = ± 1 and δm ± 2
will be broadened, the latter much more than the former. As a consequence, line
width alternation of the five lines in the strong exchange limit can be expected for
flexible biradicals. In fact, the lowest and highest field lines and one component of
the central line remain unaffected, while the intermediate lines are broadened, and
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even more so are two components of the central line.

Fig. 7.25. Stick plot diagram of the transition fields of dinitroxide radicals as a function of R = J/A. The heights
of the sticks are proportional to the relative intensities of the transitions

Fig. 7.26. EPR spectra of two different biradicals dissolved in tetrahydrofuran. After [7.39]

Fig. 7.27. Scheme of the structure of a flexible dinitroxide radical
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Fig. 7.28. Calculated spectra of the radical of Fig. 7.27 as a function of temperature. After [7.41]

These qualitative results were put on a quantitative basis using Redfield theory,
i.e., assuming that the exchange coupling is modulated rapidly by the intramolecular
motion [7.41]. In this limit the line width is expected to be given by:

where J is the time average of the exchange-coupling constant and j(J) is the
spectral density. The calculated spectra for the biradical (Fig. 7.27) are shown in
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Fig. 7.28. It is apparent that at low temperature the spectrum is indistinguishable
from that of a simple monoradical, and even at high temperatures the height of the
central line is identical to that of the external ones.

Fig. 7.29. Calculated spectra of a dinitroxide radical existing in two configurations. τ1 is the lifetime in each
configuration, a is the hyperfine splitting parameter. After [7.42]

The model has been extended also to the case of slow motion. In Fig. 7.29 the
results of calculations within this generalized model are shown [7.42]. The
nitroxide is supposed to inter-convert between two conformations with equal
lifetimes: in one configuration the exchange integral is zero and in the other it is 30
times the hyperfine coupling constant. The calculated spectra are obtained for a
lifetime parameter aτ1.

Calculations are available also for the weak exchange limit, where the main
time-dependent perturbation is the modulation of anisotropic exchange.

Another type of interesting biradicals is provided by radical anions bound to a
diamagnetic metal ion [7.43]. Examples of such radical anions are obtained by
alkaline earth reduction of 1,1,4,4-tetramethyltetralin-2,3-dione: bis-complexes of
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the type shown in Fig. 7.30 are obtained, which give triplet EPR spectra. Data
collected in frozen solutions show D values in the range 40–250 G, with small E/D
ratios. The observed zero field splitting was justified within a simple model which
considers the effect of delocalization of the unpaired electrons in the π orbitals of
the ligands. The conformation of the complexes giving the best fit between the
experimental and the calculated D and E values was chosen.

Fig. 7.30. Conformation of alkaline earth complexes giving the best fit between experimental and calculated D
and E values. Θ is the angle of rotation of one radical relative to the other around the dashed line. After [7.44]
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8 Coupled Transition-Metal Ions-Organic Radicals

8.1  Introduction

Systems in which a transition metal ion is directly bound to a stable organic radical
are still relatively rare, but the number of examples reported in the literature has
increased in the last few years. There are several reasons for this increased
interest, the first being of course a theoretical one, because bringing into close
contact two atoms formally carrying unpaired electrons can allow one to study
direct exchange interactions rather than indirect superexchange. Presumably the
direct interactions can be fairly strong, and rather peculiar magnetic behaviors can
be expected to arise.

The stimulating influence of biological studies cannot be ignored also for this
class of compounds: in fact, a number of systems are known to contain organic
radicals and transition metal ions actually or potentially interacting. Just as
examples it is possible to refer to the oxygen-evolving photosynthetic system or to
enzymes such as ribonucleotide reductase, as discussed in Chap. 9. Another
possibility is given by the interaction of the widely used spin probes and spin
labels with paramagnetic metal ions [8.1].

Although in principle any organic radical can be induced to interact with a metal
ion, the most widely studied systems at the moment are the nitroxides and the
semiquinones. Both classes of organic radicals are relatively stable, and can
interact with the metal ions via the oxygen atoms, which can act as donors. In this
case if the overlap between the magnetic orbitals is large a normal covalent bond
will be formed and spins are paired. If, on the other hand, the overlap is small or
zero then direct exchange can be operative, yielding either antiferro- or
ferromagnetic coupling, as will be shown in the following sections. However, quite
numerous are also the examples of weakly coupled systems in which the atom(s)
bearing the unpaired electrons on the radical are not directly bound to the metal ion,
but nevertheless the spins are interacting, either through super-exchange or by
magnetic dipolar coupling.

8.2  Nitroxides Directly Bound to Metal Ions

Nitroxides, which we have already mentioned several times, are well-known stable
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organic radicals in which the NO group bearing the unpaired electron is protected
by bulky methyl groups (Fig. 8.1). In the free ligand the unpaired electron is in a π*
orbital and spends approximately 50% of its time on the nitrogen atom [8.2], as
shown by the fluid solution EPR spectra, which consist of a triplet, due to the
interaction with the 14N nucleus (Fig. 8.2). The g tensor is only slightly anisotropic,
as expected, but the hyperfine tensor is highly anisotropic, the largest component
being observed orthogonal to the plane defined by the NO group and the
neighboring carbon atoms. In Table 8.1 the principal  and A values for some
representative nitroxides are reported.

Fig. 8.1. Skeleton of a nitroxide

Fig. 8.2. Typical fluid solution spectrum of a nitroxide

Table 8.1. Principal values of the g and A tensors for some typical nitroxidesa

241



aThe x axis is parallel to the NO direction, z is orthogonal to the plane C–NO–C. The hyperfine components in
gauss. After [8.4].

The oxygen atom of the nitroxide can bind to a metal ion, and quite a few
different complexes have been reported up to now [8.4]. Perhaps the most
numerous are the copper(II) complexes, which therefore give the best opportunity
to rationalize the structural dependence of the exchange interaction. In fact, several
square pyramidal copper(II) complexes with nitroxides have been reported [8.5],
and the two limiting structures can be schematized as shown in Fig. 8.3, i.e., with
the radical occupying an axial or an equatorial coordination site. In both limits the
magnetic orbital on copper(II) can be loosely described as xy, lying in the
equatorial plane of the pyramid with the lobes pointing toward the ligands. When
the nitroxide occupies an axial position, its π* magnetic orbital is essentially
orthogonal to the magnetic orbital on copper(II), therefore, the coupling is expected
to be ferromagnetic. Indeed, this has been found to be the case for a number of
complexes, in which magnetic susceptibility data showed the existence of a
ferromagnetic coupling of 20–70 cm−1 [8.5]. On the other hand, when the nitroxide
is in the equatorial plane, then there can be direct overlap with the magnetic orbital
of copper(II), and consequently a large antiferromagnetic pairing of the spins.
Indeed, this has been found to be the case in all the systems studied so far.
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Fig. 8.3. The coordination geometries observed in copper(II)-nitroxide complexes

A beautiful example of a triplet spectrum has been reported [8.6] for Cu(hfac)2
(TEMPOL), where TEMPOL is 4-hydroxy-2,2,6,6-tetramethyl-piperidinyl-1-oxy.
This compound has been shown [8.7] to have the linear chain structure of Fig. 2.5.
The EPR spectra of the solid at room temperature are shown in Fig. 8.4. They are
indeed typical of a triplet with large differences between the X-band and the Q-
band data, suggesting that the zero field splitting is fairly large. The Q-band
spectrum shows clearly separated  and  transitions and at
least five features, while the X-band spectrum shows only three features. This
means that the zero field splitting is small compared to the microwave quantum of
the Q-band and comparable to that of the X-band. Further, since at Q-band
frequency the  transitions give one feature with the simple derivative
shape and three bumps, it may be assumed that the zero field splitting tensor is
completely rhombic. In fact, using (7.4–12) it is easy to check that when E/D= l/3,
the two resonance fields Bx1 and Bx2 become identical. In a polycrystalline powder
spectrum the corresponding feature will have a simple derivative shape.

This assignment is confirmed by single crystal spectra, which yielded 
, , , Dxx = 0.008(1), Dyy =

−0.144(1), and Dzz = 0.105(2)cm−1, D = 0.171 cm−1, and E/D = 0.33. The principal
axes of g and D are defined in Fig. 8.5: the two sets of axes are practically parallel
to each other, with z along the copper-axial oxygen bond direction, and x in
between the chelate angle. The triplet EPR spectrum shows that although the
structure of Cu(hfac)2 TEMPOL is that of a linear chain, the magnetic properties are
better approximated by a localized picture of one copper ion interacting with one
nitroxide group to which it is directly bound. Indeed, the radical interacts also with
the copper atom which is bound to the OH group, but this interaction is much
weaker and is not able to exchange-narrow the triplet spectra. Magnetic
susceptibility measurements [8.8] suggested that the weak coupling constant is of
0.0054 cm−1, thus justifying the fact that a triplet spectrum is observed.
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Fig. 8.4. Polycrystalline powder EPR spectra of Cu(hfac)2(TEMPOL) at room temperature. Upper X-band;
lower Q-band frequency. After [8.6]
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Fig. 8.5. Principal directions of the g and D tensors of Cu(hfac)2(TEMPOL) projected onto the molecular
plane. After [8.6]

The analysis of the zero field splitting tensor is particularly problematic in this
case, as was outlined in Sect. 2.2, because no simple estimation of the magnetic
through-space contribution can be made. In fact, the close proximity and the
delocalization of the unpaired spins makes the point-dipolar approximation in
principle unsuitable here. A rough estimation of the dipolar zero field splitting can
be made, however, by setting a charge in the baricenter of the NO group and using
the dipolar approximation. In this way we calculate D = 0.0955 cm−1, E/D = 0. We
have found that in several dinitroxides this simple treatment gives values within
10% of the experimental values, and not too dissimilar from the values calculated
with MO treatments which explicitly take into account spin delocalization.
Therefore, the large observed rhombic splitting must originate from exchange
contributions, since the magnetic through-space term should in any case be axial to
the largest component parallel to the metal-axial oxygen direction.

Beyond copper(II) systems a rather thorough characterization has been
performed also on bis-nitroxide adducts of manganese(II) hexafluoroacetylace-
tonate, Mn(hfac)2. Two complexes of the general formula Mn(hfac)2(nitroxide)2
with the structure schematized in Fig. 8.6 were reported to show antifer-romagnetic
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coupling [8.9, 10] between the manganese and the nitroxides. When the nitroxide is
proxyl (proxyl = 2,2,5,5,-tetramethylpyrrolidinyl-1-oxy), J was found to be 210 cm
−1, while with TEMPO (TEMPO = 2,2,6,6,-tetra-methylpiperidinyl-1-oxy), J = 158
cm−1, Manganese(II) is in the high spin d5 ground configuration so that five
magnetic orbitals must be present on the metal ion. At least one linear combination
of them must have the correct symmetry for overlapping with the magnetic orbitals
of the two nitroxides. A ground S = 3/2 state is anticipated, and this prediction is
confirmed by the experiment, but the finite value of J indicates that the pairing is not
complete and that manganese(II) and the radical are exchange-coupled rather than
bound by a strong covalent bond even if the Mn–O bond distances are reasonably
short, 215.0(4) and 212.7(4) pm for proxyl and TEMPO, respectively. The energy
separations of the excited levels are given in Fig. 8.7.

Fig. 8.6. The structure of bis-nitroxide adducts of Mn(hfac)2

The EPR spectra of these compounds confirmed nicely the above scheme of
energy levels obtained by magnetic susceptibility measurements. In Fig. 8.8 are
shown the X-band spectra of Mn(hfac)2(TEMPO)2 at room temperature and at 4.2
K, respectively. The low temperature spectra, confirmed also by single crystal
data, have  and , as can be expected for a ground quartet state, with
a zero field splitting which is larger than the microwave quantum. In cases like this
it is extremely useful to record spectra at different frequencies, and in Fig. 8.9 we
show the Q-band spectra at room temperature and at ca. 140 K. At the latter
temperature the excited multiplets are essentially depopulated, so that the spectrum
is again that of the ground quartet. It is apparent that they are much different in
appearance from the X-band ones, showing many more transitions, in agreement
with a zero field splitting which is smaller than the microwave quantum at Q-band
frequency. The complete analysis of the EPR data at low and room temperature
provided only an estimation of the spin hamiltonian parameters for the ground
quartet and the first excited sextet, due to the broadness of the bands. For the ground
quartet it was found D = 0.63 cm−l and E/D = 0.115, while for the first excited
sextets D ≈ 0.075 cm−1.
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Fig. 8.7. Spin energy levels for Mn(hfac)2(proxyl)2. After [8.8]

Fig. 8.8. Polycrystalline powder EPR spectra of Mn(hfac)2(TEMPO)2 at X-band frequency, a 300 K; b 4.2 K.
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After [8.8]

The experimental zero field splitting tensors were analyzed in terms of those of
the individual manganese(II) ions, DMn, and of the exchange-determined tensors,
using the relations:

where DMn−r and Dr−r are the contributions determined by the manganese-radical
and the radical-radical interactions, respectively. Neglecting Dr−r, on the
assumption that it must be much smaller than the other two, because of the longer
radical-radical distance, the two Eqs. (8.1-2) allow us to calculate DMn and DMn−r
from the experimental values observed for the quartet and the sextet levels. The
values thus obtained (DMn−r ≈ −0.36cm−1 and DMn ≈ 0.25 cm−1) agree quite well
with those reported for simple manganese(II) complexes with diamagnetic ligands,
and with the value reported for Cu(hfac)2TEMPOL.

Fig. 8.9. Polycrystalline powder EPR spectra of Mn(hfac)2(TEMPO)2 at Q-band frequency, a 300 K; b 140 K.
After [8.8]
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8.3  Weak Exchange with Nitroxides

Very extensive work has been performed on transition metal complexes weakly
interacting with various nitroxides [8.3]. By this we mean systems in which the
distance of the metal from the NO group is too large to consider the two as directly
bound, and yet they are interacting to some extent. When J is small, the separate
lines of the radical and the metal ion can be observed, but the radical lines are
generally broadened by the spin-spin interaction with the metal. If the latter is
slowly relaxing in fluid solution, such as copper(II), oxovanadium(IV),
manganese(II), gadolinium(III), etc., the spin-spin effects on the radical can be
easily detected [8.10–15]. One example of such a spectrum is provided by a spin-
labeled copper porphyrine, whose structure is depicted in Fig. 8.10. When R =
OC2H5, the spectrum consists of four copper lines, unequally broadened by
incomplete motional averaging (Fig. 8.11a). The observed splitting of the high field
feature is due to the interaction with the four nitrogen atoms of the porphyrin. The
spectrum of the spin-labeled derivative Fig. (8.11b, c) is much different from the
sum of the spectra of the copper porphyrin and of the nitroxide, showing a doublet
of triplets in the nitroxide region, and a greatly broadened copper spectrum. The
splitting of the characteristic triplet of the nitroxide is clearly due to the spin-spin
interaction with the unpaired electron on copper, and it amounts to 72 G. The
pattern of the intensities of the two triplets is 3:1 in agreement with that predicted
for AB spectra (by analogy with NMR nomenclature).

On some analogous copper complexes (Fig. 8.12), also accurate single crystal
spectra were recorded, by doping into zinc tetraphenylporphin, ZnTPP.
Representative spectra are shown in Fig. 8.13. The spectra were interpreted with
the formalism described in Sect. 3.5. They are complicated by the fact that on
doping ZnTPP several different species are found. The analysis suggested that the J
values in the different species range from −1 to 30 × 10−4 cm−1, with metal-
nitroxide distances ranging from 1300 to 1550 pm.

249



Fig. 8.10. The structure of a porphyrine ring binding to copper. R = OC2H5, tempamine

Fig. 8.11a, b. X-band EPR spectra of copper porphyrine complexes in CHCl3 solution at 21°C. a R = OC2H5;
b tempamine, scan 1000 G; c scan 200 G. After [8.11]
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Fig. 8.12. Scheme of the structure of a spin-labeled copper porphyrine

Spectra of frozen solutions can also be used to characterize the magnetic
interaction between the metal ion and the organic radical, but in this case the
dipolar spin-spin interaction is not averaged to zero and distances can be obtained.

Fig. 8.13A, B. X-band single crystal spectra of the trans isomer of the copper porphyrine of Fig. 8.12 doped
into ZnTPP. Left, copper; right, nitroxide regions of the spectra. A Experimental; B computer-simulated spectra.
After [8.12]

The interest of weak metal-nitroxide interaction has not been limited to S = 1/2,
but also to higher multiplicity ions. So, for instance, data have been reported for
derivatives with nickel(II) (S = 1) [8.18], chromium(III) (S = 3/2) [8.16],
manganese(II) [8.17], iron(III) (S = 5/2) [8.18], and gadolinium(III) (S = 7/2)
[8.18]. The data are summarized also in a review article [8.3].
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Spin labeling has been extensively used to investigate biological molecules, for
instance, cytochrome P450. Simple model compounds have also been studied, in
order to provide a firm basis for the interpretation of the spectra observed in more
complicated systems [8.19]. Figure 8.14 illustrates one of these models. When two
molecules of imidazole are bound, the iron(III) is in the low spin form (S = 1/2).
The EPR spectra of FeTPP(Im)2 and of one spin-labeled derivative are shown in
Fig. 8.15. Spectrum A is that of the native porphyrin and is typical of low spin
iron(III), with , and 2.91. The two spin-labeled derivatives yield
fairly similar spectra markedly different from those of the native species. The sharp
signal at  in both B and C is due to free nitroxide, which is present as an
impurity, the remaining four features being due to the iron(III) spin-labeled
complex. Two signals at  and 2.14, respectively, correspond to the
average between the  of the radical and  and 2.27 of the iron
porphyrin, respectively. The other two signals at  and 2.32 correspond to
the partial average of the  signal of FeTPP with  of the radical. This
indicates that the exchange interaction is much larger than the g anisotropy for the
former signals, but not large enough to average the latter. The spectra were
simulated according to the procedure outlined in [8.13]. The best fit yielded J =
0.28 cm−1 and a distance between iron(III) and the radical of 700 pm.
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Fig. 8.14. The structure of spin-labeled iron porphyrins. After [8.19]

8.4  Semiquinones

Orthosemiquinones are stable, negative, radical ions, which can chelate transition
metal ions through two equivalent oxygen atoms (Fig. 8.16). The unpaired electron
in the ligand is in a π* molecular orbital and is spread out all over the molecule.
The semiquinones can easily undergo both reduction and oxidation reactions
according to the scheme shown below. Quite a few
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Fig. 8.15A-C. X-band spectra at – 180°C of (A) FeTTP(im)2 +; , and  in
toluene/chloroform glasses. I is defined in Fig. 8.14. After [8.19]

Fig. 8.16. The structure of a semiquinone

complexes have been reported with these ligands and both paramagnetic and
diamagnetic metal ions [8.20–24]. In general, EPR spectra, although useful for the
assignment of the formal oxidation states of both the metal and the ligand, have not
been studied in detail, and often the main information obtained is that no EPR
spectrum at all could be detected.

In a series of complexes of formula M(SALen)(SQ), where SALen is N,N′-
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ethylene bis(salicylideneiminato), SQ is an ortho-semiquinone and M = FeIII,
MnIII, CoIII, the structure is postulated [8.25] to be as shown in Fig. 8.17. When M
= iron(III) the magnetic susceptibility indicates a ground S = 2 state as a result of a
strong antiferromagnetic coupling of the metal ion, S = 5/2, with the radical, but no
EPR spectra could be detected, presumably due to large zero field splitting effects.
When M = manganese(III), S = 2, the ground state is S = 3/2 and only a broad
signal centered at  has been reported. Cobalt(III) is diamagnetic, therefore,
the EPR spectrum is very simple (Fig. 8.18). The fluid solution spectrum consists
of eight doublets centered at . The hyperfine pattern is attributed to the
interaction with a 59Co nucleus (A = 10.2 G) and a 1H nucleus (A = 3.5 G). The
spectrum remains isotropic also in glassy solution, although the lines are severely
broadened, and only the hyperfine interaction with 59Co (A = 17.5 G) can be
detected.

Fig. 8.17. The proposed structure of M(SALen) (SQ) complexes
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Fig. 8.18. X-band EPR spectra of Co(SALen)(3,5-DBSQ). Upper, room temperature; lower, 77 K. After
[8.25]

Several complexes of general stoichiometry M(SQ)n+ (SQ = semiquinone ligand)
have been reported (M = VIII, FeIII, CrIII) [8.22–26]. The magnetic susceptibility
data indicate a fairly strong coupling, so that the chromium complexes are
practically diamagnetic, the vanadium has one unpaired electron, and iron has two.
EPR spectra were reported only for the V(O2C6Cl4) complex, where the ligand has
the structure shown in Fig. 8.19. In fluid solution the unpaired electron appears to
be located essentially on one semiquinone, a rather surprising result if one
considers that two semiquinones interact strongly with the metal electrons in such a
way to determine a complete pairing of them.
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Fig. 8.19. The structure of O2C6Cl4

Fig. 8.20. The structure of [Ni(CTH)DTBSQ]+. After [8.27]

[Ni(CTH)DTBSQ]+ (CTH = d1-5,7,7,12,14,14-hexamethyl-1,4,8,11-
tetraazacyclotetradecane; DTBSQ = 3,5-di-t-butyl-semiquinone) has the structure
[8.27] shown in Fig. 8.20. The nickel(II) ion is expected to have a ground 3A2g

state, with the unpaired electrons in the x2 – y2 and z2 orbitals. These magnetic
orbitals are orthogonal to the π* magnetic orbital of DTBSQ in this geometry and a
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strong ferromagnetic coupling can be anticipated. Indeed, the magnetic data show
that the ground state of the complex is a quartet even at room temperature,
suggesting that J > 400 cm−1. The EPR spectra (Fig. 8.21) practically do not vary in
the range 4.2–300 K. They are typical for transitions within one Kramers doublet
(effective spin ), with  values: , , . These values
clearly indicate that the ground state has rhombic symmetry and that it is not a true 

 state, but, in agreement with the magnetic data, it corresponds to the 
 levels of S = 3/2. In fact, the spin quartet is split in zero field and if the

symmetry is axial, two Kramers doublets corresponding to  and ± 3/2,
respectively, are formed. If the energy separation between the two doublets is
larger than the microwave quantum, then only transitions within the two doublets
can be observed. The  values within the  doublet, , are given by: 

; , where  represents the true  values for the

system. Transitions within M = ± 3/2 are forbidden in axial symmetry.

Fig. 8.21. Polycrystalline powder EPR spectrum of [Ni(CTH)DTBSQ]PF6. After [8.27]
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If the symmetry is lower than axial, then the  values in the two Kramers
doublets are given [8.28] by:

where t = E/D.
If we assume that  then from (8.3) and the experimental 

values we can calculate , , and t. Thus, we find , , E/D =
0.293. In the present case the  values are the average of the values of the nickel
ion and of the semiquinone. Using Eq. (3.20) and Table 3.3, assuming that  for the
radical is 2.00, we finally calculate , in excellent agreement with the
value expected for nickel(II) in octahedral symmetry.

More examples of simple model systems in which a metal ion interacts with
semiquinones are given in Sect. 9.4.
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9 Biological Systems

9.1  Introduction

The application of EPR to the study of magnetically coupled species in biological
systems is one of the most intensively exploited fields at the moment, and almost
every day new exciting examples are reported. Therefore, here more than in any
other section, we will not be able to give exhaustive coverage of the area, but
simply will report those examples which seem to us to be more appropriate,
interesting, and worthy of attention. The whole field has already been covered by a
number of review articles [9.1–4], to which the interested reader is invited to refer.
Also, given the necessity of using a number of related techniques in order to obtain
a good understanding of the complex matter, it may prove useful to consider other
related magnetic techniques, such as nuclear magnetic resonance [9.5–7], ENDOR
[9.8], magnetically perturbed Mössbauer spectroscopy [9.9–10], etc. Indeed, in the
following sections we will frequently refer to the last mentioned technique, which
has proved to be extremely useful for the characterization of iron proteins.

We will briefly review copper proteins, then iron proteins, and finally the
photosynthetic oxygen-evolving processes, both in higher plants and bacteria.

9.2  Copper Proteins

A number of important proteins and enzymes contain copper ions at the active site
[9.11–14]. The principal biological role known up to now for proteins which
contain copper include oxygen transport and activation, electron transfer, iron
metabolism, and superoxide dismutation. For this book the most interesting copper
systems are superoxide dismutase (SOD) and the coupled dinuclear copper
proteins such as hemocyanin, the oxygen-binding protein of mollusks and
arthropods, and tyrosinase, an enzyme with both monooxygenase and oxidase
activity.

SOD is an enzyme which is present in the erythrocytes of mammalians which
catalyzes the dismutation of the toxic superoxide ions [9.15]. The enzyme from
bovine erythrocytes is composed of two identical subunits, each of which contains
one copper(II) and one zinc(II) ion. Frequently, it is indicated as Cu2Zn2SOD. The

261



X-ray crystal structure [9.16] shows that the two metal ions are separated by about
600 pm. Copper is coordinated to four histidines, one of which is deprotonated and
shared with the zinc ion. The zinc is also bonded to two additional histidines and to
an aspartic acid. The copper(II) ion is in a distorted five-coordinate and the zinc in
a tetrahedral environment (Fig. 9.1). The X- and Q-band EPR spectra of the native
form [9.17–19], shown in Fig. 9.2, are typical of a five-coordinate copper(II)
complex, intermediate between a trigonal bipyramid and a square pyramid. The
zinc ion can be substituted by several other paramagnetic ions, such as copper(II)
and cobalt(II). In the Cu2Cu2SOD and Cu2Co2SOD derivatives the Cu–Cu and Cu–
Co pairs are antiferromagnetically coupled with J = 52 and 16.5 cm−1, respectively
[9.20–21]. The Cu2Co2SOD derivative is EPR silent down to liquid helium
temperature, a result which is not unexpected since the coupling of two half-integer
spins does not yield Kramers doublets. In fact, coupling SCu = 1/2 with SCo = 3/2,
two states with S = 2 and S = 1 are predicted, both largely split due to the large
zero field splitting expected for the individual tetrahedral cobalt(II) ions. In fact,
using Table 3.3 we expect D2 = 1/2 DCo and D1 = 3/5 DCo, plus the presumably
smaller term brought about by the exchange interaction. Since in distorted
tetrahedral cobalt(II) complexes, DCo can be as large as 10 cm−1 [9.22], it is easily
understood that no transitions can be detected in a normal EPR experiment.

The Cu2Cu2SOD derivative, on the other hand, yields the EPR spectrum shown
in Fig. 9.3B. Although it is typical of a triplet, with the characteristic half-field
transition, it is not easily interpreted, due to the broadness of the lines, and indeed
it was not assigned until the EPR spectra of a simple copper(II) complex with
rather similar appearance were reported.

Fig. 9.1. Scheme of the active site of Cu2Zn2SOD
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Fig. 9.2. EPR spectra of Cu2Zn2SOD. Left X-band and right Q-band frequency. After [9.11]
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Fig. 9.3. A Polycrystalline powder EPR spectrum of [Cu(bpt)(CF3SO3)(H2O)]2 at X-band frequency and 7K;
B frozen solution spectrum of Cu2Cu2SOD in water at X-band frequency; C polycrystalline powder EPR
spectrum of [(TMDT)2 Cu2(im)(ClO4)2]2 at X-band frequency and 20 K. After [9.25]

(μ-benzotriazolato-N1,N3)bis{[tris(N1-methylbenzimidazol-2-yl)-methyl)-amine-
N,N3,N3′,N3″]bis[aqua(trifluoromethanesulfonato-O) copper(II)]}, [Cu(bpt)
(CF3SO3)(H2O)]2 has the structure shown in Fig. 9.4, with two copper ions
separated by 408.5 pm [9.24]. The coupling between the two is antiferromagnetic,
with J = 236 cm−1. The EPR spectra [9.25] of [Cu(bpt) (CF3SO3) (H2O)]2 are
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shown in Fig. 9.3A. The features showing hyperfine splitting are assigned to the
transitions parallel to z, the feature with the simple derivative shape to the two
transitions parallel to x, and the remaining two features in the  region to the
transition parallel to y. This assignment has been confirmed by single crystal
spectra which yielded , , , Dxx =
0.0026 (5) cm−1, Dyy = 0.0338 (3) cm−1, Dzz = −0.0364 (4) cm–1, with the principal
axes defined in Fig. 9.4. In the two-parameter fit this corresponds to D= −0.0546
cm–1, E/D = 0.29.

Fig. 9.4. The structure of [Cu(bpt)(CF3SO3)(H2O)]2 with the principal directions of the g and D tensors. After
[9.25]

The comparison of the EPR spectra of Cu2Cu2SOD with those of [Cu(bpt)
(CF3SO3) (H2O)]2 suggests that the feature observed at 0.36 T, which in the
literature has been used as a fingerprint of the coupled species, and another one,
peaking at 0.26T are the fine components of the transition parallel to y. According
to this assignment,  and Dyy = 0.0317 cm−1. The broad signal between
0.26 and 0.32T must be associated with the two transitions parallel to x, which
must be quasi-degenerate if E/D ≈ 1/3. Finally, the bumps observed at fields lower
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than 0.26T should correspond to the low field transitions parallel to z, the high
field one being in the region obscured by mononuclear copper impurities.

The estimated zero field splitting in both [Cu(bpt) (CF3SO3) (H2O)]2 and
Cu2Cu2SOD is much larger than calculated for the point-dipolar contribution,
showing that even for two copper ions separated by 400–600 pm important
exchange contributions can be operative. This is confirmed by the direction of Dzz
in [Cu(bpt) (CF3SO3) (H2O)]2, which, as shown in Fig. 9.4, is orthogonal to the
copper-copper direction.

Fig. 9.5. X-band EPR spectra of dimer (EPR detectable met-hemocyanine), dimer with 100-fold excess 
and after 24-h dialysis. After [9.11]

In hemocyanin and tyrosinase the active site contains pairs of copper ions, which
are generally EPR-inactive. In fact, the deoxy form contains two copper(I) ions and
is thus totally diamagnetic, but also the oxy form, which is obtained by oxidation
with molecular oxygen, is diamagnetic. Spectral evidence indicates that in this case
both the copper atoms are in the +2 oxidation state, but that a strong
antiferromagnetic coupling yields a ground singlet, with no evidence for a low
lying triplet state. The only EPR-active dinuclear species reported so far is the so-
called dimer, or EPR-detectable met, which is obtained by NO oxidation of the
deoxy form and has the EPR spectrum [9.26] shown in Fig. 9.5. It is clearly a
triplet spectrum, with a well-resolved half-field transition. Temperature
dependence of the signal intensity [9.27] showed that the coupling between the two
copper ions must be small, |J| < 5 cm−1. Simulations of the spectra were performed
in order to obtain structural information on the assumption that the zero field
splitting is dominated by magnetic dipolar interactions. The copper–copper
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distance was thus estimated to be ≈ 600 pm. Addition of excess azide results in the
formation of dimer , in which the copper–copper distance was estimated to be
≈ 500 pm [9.28]. In these EPR-active, largely uncoupled derivatives, it is currently
believed that the endogenous bridge responsible for the large coupling in the met
form is detached. The weak EPR signal observed in met hemocyanin has been
attributed to a small fraction of the sites where the endogenous bridge has a lower
stability constant [9.29].

9.3  Iron Proteins

Iron proteins form a very large group, which is usually split into three classes, (1)
hemoglobin and myoglobin, which are responsible for the transport and storage of
oxygen; (2) iron-sulfur proteins, which are responsible for electron transport and
are widely distributed in plants, animals, and microorganisms; and (3) that which
contains oxo-bridged iron(III) ions, which perform a variety of biological
functions, including oxygen transport, the reduction of ribo- and deoxyribo-
nucleotides, phosphate ester hydrolysis, and iron storage. It is especially in the last
two classes that proteins relevant to this book are to be found, although well-
documented cases of exchange-coupled species are found also in iron porphyrins,
which are structurally related to the hemoglobin class of iron proteins.

9.3.1  Iron Porphyrins and Heme Proteins

Heme is a porphinato iron complex in which the common oxidation states for the
metal atom are +2 and +3, each of which can have several different spin states.
Indeed, iron(II), which has a d6 configuration, can have a ground S = 0, 1, and 2
state, while iron(III), which is a d5 ion, can have S = 1/2, 3/2, and 5/2. All these
different spin states have been observed [9.30]. From the EPR point of view the
important hemes are the iron(III) derivatives, because this ion has an odd number of
electrons, and in all the possible geometries and spin states it has a ground Kramers
doublet which always yields a spectrum, provided that the temperature is
sufficiently low to yield a long enough relaxation time. Matters are different for the
paramagnetic states of iron(II), which is an even electron ion. In this case, in fact,
zero field splitting removes the spin degeneracy of the ground multiplet to such an
extent that transitions between the states can often be induced only at fields much
higher than those usually available.

Particularly interesting appear to be the so-called high-valent iron porphyrins
[9.31, 32]. This expression is used to refer to iron porphyrin complexes more
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oxidized than the iron(III) oxidation state. Species of this type are, or are proposed
to be, involved in various biological processes mediated by peroxidase and
catalase, and by cytochrome P-450.

The peroxidases, for instance, exhibit a catalytic cycle in which the resting
enzyme containing ferric heme reacts with hydrogen peroxide losing two electrons:

[Fe(III)P]+ + H2O2→[FeP]3+ +2H2O,

Where P is just a shorthand notation for the porphinato group. The [FeP]3+ can be
formulated either as iron(V) with P2−, or as iron(IV) with the P− anion radical. In
any case the [FeP]3+ species has an odd number of electrons and should be
observed in EPR. Schultz et al. [9.33] succeeded in obtaining the spectra at T < 4K,
and under rapid passage conditions [9.34], as shown in Fig. 9.6. The EPR data
were complemented with Mössbauer spectra, which could be explained
satisfactorily in terms of an iron(IV) with a ground S = 1 state, showing a large zero
field splitting, D = 23 cm−1. The EPR spectra were then interpreted within a model
with a small anisotropic exchange, Jxx = −2, Jyy = −1, and Jzz = +3 cm−1. These
values in turn were explained on the basis of the dipolar coupling between the
iron(IV) species and the a2u radical of the porphyrin.

Fig 9.6. X-band EPR spectrum, of horseradish peroxidase compound I recorded under rapid passage conditions.
After [9.34]

Recently, the oxidized species [FeCl(TPP)] (SbCl6) and Fe(TPP) (ClO4)2 were
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also characterized [9.35] (TPP = tetraphenylporphinato). In this case the Fe(TPP)
moiety has only two positive charges, one electron less than [FeP]3+, and no EPR
spectra could be observed. However, the Mössbauer spectra showed the presence
of high spin iron(III), and the magnetic data showed that a strong antiferromagnetic
coupling is operative in [FeCl(TPP)] (SbCl6), J > 500 cm−1, while the coupling is
ferromagnetic in [Fe (TPP) (ClO4)2, J ≈ − 80 cm−l. For the former the ground state
is S = 2, and for the latter it is S = 3, both originating from the interaction of SFe =
5/2 and Sr = 1/2. It is interesting also to note that NMR spectra of the two
compounds showed opposite shifts of the phenyl protons: for instance, the ortho-
and para protons are shifted downfield (42 and 35 ppm, respectively) in [FeCl
(TPP)] (SbCl6) and upfield (−19 and −13 ppm) in Fe(TPP) (ClO4)2. This is a
beautiful example of the alternation in sign of the hyperfine coupling constant (the
EPR eq.uivalent of the NMR isotropic shift) in the high and low total spin states
obtained by coupling a spin S with another with . Indeed, the use of Table 3.3
yields A = + 1/6 Ar for S = 3 and A = −1/6 Ar for S = 2.

Another system which is very interesting from the EPR point of view is
cytochrome-c-oxidase [9.36]. Although very active research is being done on this
enzyme at the present time not very much is known about its structure. It is known
that it is the respiratory enzyme that catalytically reduces 1 mol dioxygen to 2 mol
water with the concomitant release of energy which is stored in the ADP-ATP
cycle. The enzyme contains four metal centers (two irons and two coppers) per
functioning unit. In the oxidized (resting) form of the enzyme one iron is in a heme
unit, and one copper is isolated and EPR-detectable, while at the active site there is
a high spin iron(III) which is strongly coupled to a copper(II) ion to give a ground S
= 2 state. The S = 3 state has been estimated to be at least 1200 cm−1 above the
ground state. The system is EPR-silent, presumably due to large zero field splitting.

If the native enzyme is treated with cyanide, the FeIII-CuII moiety remains EPR-
silent, although there is no doubt that the iron(III) ion is forced into the low spin
form. There are conflicting reports in the literature, but it seems now that the
coupling between low spin iron(III) and copper(II) is in this case ferromagnetic,
yielding a ground triplet state [9.37]. Some model compounds were also
synthesized containing low spin iron(III) porphinato and a square planar copper(II)
ion bridged by a cyanide ion which occupies axial positions for both the metal ions
[9.38]. These species yielded EPR spectra at low temperatures with many
resonances in the range 0−0.5 T. They were attributed to transitions between the
levels of what was substantially described as S′ = 1 level. The point we want to
make here is that a low spin iron(III)-copper(II) pair is complicated by the fact that
the iron has a quasi-degenerate orbital ground state, making the analysis of the
energy levels, and of the EPR transitions, of the pair rather difficult. Indeed, if we
take into account the orbital degeneracy we see that the energy levels must be
expressed through a spin hamiltonian which includes the isotropic, anisotropic, and
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antisymmetric terms, all with very similar relative importance; therefore,
discussion of ferro- or antiferromagnetic coupling may be just a semantic problem.
We have already discussed this point in Sect. 2.6.

9.3.2  Iron-Sulfur Proteins

The number of proteins which contain iron atoms bound to sulfur atoms is very
large, showing several different basic arrangements and many different functions
[9.39, 40]. Certainly most of them are devoted to the general problem of electron
transport in biology, but they are also relevant to the metabolism of H2 and N2.
They are all named iron-sulfur proteins, and are usually classified according to the
number of iron atoms which are present in the metal sites. So 1-Fe, 2-Fe, 3-Fe, and
4-Fe sites are known, whose general structures [9.40] are shown in Fig. 9.7.

Proteins containing single iron sites are of different types, but the simplest are
conventional rubredoxins, which contain tetrahedrally coordinated iron(III) in the
oxidized and iron(II) in the reduced form, respectively. In both oxidation states iron
is in the high spin form. Also, several model compounds have been synthesized to
mimic the structure and the spectral properties of the iron sites of the proteins. In
view of the relevance of the single ion spin hamiltonian parameters to the
interpretation of the spectra of the coupled systems, we will provide here a brief
resumé of the relevant properties of both oxidized and reduced rubredoxins.
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Fig. 9.7. General structures of iron-sulfur centers in proteins. After [9.40]

Rubredoxins, Rd, in their oxidized form exhibit resonances near  and 
. These resonances can be explained by an S = 5/2 spin

hamiltonian with E/D ≈ 1/3. Mössbauer data showed [9.43] that the zero field
splitting parameters in Rd from Clostridium pasteurianum are: D = 1.9 cm−1 and
E/D = 0.23, while the hyperfine coupling constants were determined to be Ax =
−16.5 G, Ay = − 15.9 G, and Az = − 16.9 G. These values are believed to be rather
typical for high spin iron(III) in a tetrahedral environment of four sulfur atoms. An
exception to this is the oxidized form of desulforedoxin, Dx, from Desulfovibrio
gigas, which shows nearly axial EPR spectra [9.44] characterized by E/D ≈ 0.08.

In the reduced forms of both Rd and Dx no EPR spectra can be detected, but the
spin hamiltonian parameters could be obtained from Mössbauer data. In both cases
the zero field splitting was found to be fairly large (7.6 cm−1 for Rd, and −6 cm−1

for Dx, with E/D ratios of 0.28 and 0.19, respectively) [9.45].
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The 2-Fe proteins, which are generally named ferredoxins, contain in the active
site dinuclear species with the structure B of Fig. 9.7. In the oxidized form the two
metal atoms are high spin iron(III), while in the reduced form a trapped valence
high spin iron(III)-high spin iron(II) species is present. In both the oxidized and the
reduced form the metal ions are antiferromagnetically coupled to yield a ground S =
0 and S = 1/2 state, respectively. The former is EPR-silent, while the latter gives a
characteristic spectrum, with a prominent feature at , which has long been
used as a fingerprint of this species [9.46].

The ground state of the reduced form originates from the exchange interaction
between a high spin iron(III), S = 5/2, and a high spin iron(II), S = 2. The coupling
is of the order of 400 cm−1. Typical spectra [9.47] are shown in Fig. 9.8, from
which it is apparent that three  values are observed at ; 

; .
In the limit of large J, the  values of the ground doublet are calculated [9.46] to

be given by:

If it is assumed that the g tensor of iron(III) is essentially isotropic and equal to 2,
using (9.1) and the experimental  values it is possible to calculate the  values of
the iron(II) center. Bertrand and Gayda [9.48] used Eq. (9.1) within a ligand field
formalism, to show that the variations in the  values of 2-Fe ferredoxins can be
justified by variations in the electronic structure of the iron(II) center. Later, the
same model was applied also to a new class of 2-Fe ferredoxins, characterized by 

, smaller than in the other class [9.49]. Using the Angular Overlap
formalism variations of the ligand field parameters have been related to the σ and π
bonding characteristics of the sulfur ligands in the iron(II) environment [9.50].

The EPR spectra have been used also to determine the exchange-coupling
constant, through measurements of relaxation times, as we reported in Sect. 6.3.
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Fig. 9.8. EPR spectra of reduced iron-sulfur proteins from bovine adrenals, Clostridium Pasteurianum, and
spinach. After [9.47]

The 3-Fe proteins were first identified in Azotobacter vinelandi [9.51, 52] and
then were found to be present in several other ferredoxins such as in beef heart
aconitase, in Desulfovibrio gigas ferredoxin II, FdII, hydrogenases from D. gigas
and D. desulfuricans, etc. [9.39]. The EPR spectra [9.53] of three different
proteins, at both X- and Q-band frequency at 14 K are shown in Fig. 9.9. At higher
temperatures the spectra broaden. The EPR spectra have been described as fairly
isotropic and they are centered at . This has been taken as evidence of a S
= l/2 ground state, and a confirmation was found in the Mössbauer studies as we
reported in Sect. 4.3.1.

The pattern of energy levels was confirmed also by a study of the temperature
dependence of the EPR line-width [9.54]. Indeed, it was found that the electronic
relaxation time follows an exponential law:

with δ = 88 cm−1. This behavior agrees with an Orbach mechanism and indicates
the presence of an energy level 88 cm−1 above the ground state. Identifying this
level with the first excited doublet state, and assuming for the sake of simplicity
two identical exchange constants, yielded J13 = J23 = 40 (6) cm−1, J12 = 34(2)cm−1.
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Attempts have also been made to synthesize simple molecular compounds with
the same structure and properties of the proteins, but up to now only linear clusters
of formula [Fe3S4(SR)4]3− have been obtained (R = Et, Ph) [9.55]. These have been
found to have a ground S = 5/2 state, with a fairly small zero field splitting 

 and rhombic anisotropy, as shown by the EPR spectrum, which has
one . Using the same formalism as for the protein, the magnetic data could
be fit with J13 = J23 = 300 cm−1 and .

Fig. 9.9. X- and Q-band EPR spectra of 3-Fe proteins, a A. vinelandii; b half-reduced state of T. commune
ferredoxin; c oxidized state of T. commune ferredoxin. After [9.53]

FdII can be isolated also in the reduced form [9.56]. The ground state has been
assumed to be S = 2 on the basis of Mössbauer [9.56] and MCD [9.57]
measurements. Mössbauer spectroscopy showed also that one iron has parameters
typical of high spin iron(III), while the other two are equivalent, with parameters
which are the average of those observed for oxidized and reduced tetrahedral sulfur
sites. These data were interpreted with a model according to which the equivalent
iron atoms form a completely delocalized mixed valence pair with a ground S = 9/2
state. This pair is coupled to the third high spin iron(III) ion to give a ground S = 2
state. This is largely split in zero field, with two levels separated by ≈ 0.3 cm−1.
This point has been confirmed by the EPR X-band spectra, which show one
transition at very low field [9.58]. The ground S = 9/2 state of the delocalized pair
is in agreement with a model which includes both Heisenberg exchange and a term
describing valence delocalization, similar to that described in Sect. 2.7. This effect
has been discussed also within the Xα-Valence Bond model by Noodleman and
Baerends [9.59].

The species with four iron atoms are characterized by three different oxidation
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states. There are essentially two classes of proteins which have this cluster of iron
atoms, namely the high potential iron protein, HiPIP, and the four-iron ferredoxins,
and several model compounds have been synthesized which mimic their redox and
spectral properties [9.39]. It is now generally accepted that there is a good
correspondence between the states indicated below for the models and the proteins,
respectively:

The states of Fd and HiPIP (in parentheses) have been observed only in vitro. For
the iron-sulfur core these states correspond to:

Formally, these states correspond to lFeIII +3FeII, 2FeIII + 2FeII, and 3FeIII + lFeII,
respectively. The [Fe4S4]2+ cluster is diamagnetic and does not show any EPR
spectrum. On the other hand, both [Fe4S4]+ and [Fe4S4]3+ have a ground  state
and they show characteristic EPR spectra. [Fe4S4]+ is characterized by  and
the overall appearance of the spectra is similar to that of reduced 2-Fe ferredoxins,
while [Fe4S4]3+ is characterized by .

A detailed study of the EPR spectra of model compounds has been recently
performed. By X-ray irradiation of the diamagnetic (NBu)4[Fe4S4(SC6H5)4] two
species were formed [9.60], which were identified with the [Fe4S4]+ and [Fe4S4]3+

clusters respectively. These species were found to have principal  values which
correspond nicely to the values of Fdred and HiPIPox, respectively (Table 9.1).

Table 9.1. g values of model centers compared with those of iron-sulfur proteins
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The diamagnetism in [Fe4S4]2+ can be rationalized assuming antiferromagnetic
coupling between two pairs of mixed valence iron(II)-iron(III) couples [9.59].
[Fe4S4]+ is similar to the reduced form of 2-Fe ferredoxin, because two iron(III)
ions are strongly coupled to give an S = 0 ground state, and what is left is an
iron(III)-iron(II) couple practically identical to that of the 2-Fe species.

Recently also some clusters of the type MFe3S4 have been isolated and studied.
For instance, model compounds of formula [MFe3S4(SPhCl)3((C3H5)2Cat)CN]3−,
with M = Mo, W, (SPhCl = p-chloro-thiophenol; Cat = catecholate) give spectra
characteristic of a ground S = 3/2 subject to a large zero field splitting [9.63].

CoFe3S4 clusters were obtained [9.64] by incubation of Desulfovibrio gigas
ferredoxin, which contains Fe3S4 clusters, with Co2+. The EPR spectrum reveals
the hyperfine splitting into eight components expected for 59Co, and the  values,
corresponding to an effective  state, are , , .
This cluster is described as [CoFe3S4]2+, isoelectronic to the [Fe4S4]+ cluster.

9.3.3  Sulfite Reductase

The sulfite reductase isolated from Escherichia coli is a complex
hemoflavoprotein of molecular weight 685 000 containing four sirohemes and four
Fe4S4 clusters [9.65]. It catalyzes the six-electron reductions of  to S2− and
of  to NH3. The protein can be split and a subunit containing one siroheme
and one Fe4S4 cluster can be isolated. This subunit is indicated as SiR. Full
reduction of this unit is accomplished by two electrons. The oxidized form of the
enzyme yields an EPR spectrum characteristic of a high spin iron(III) heme [9.66].
No other signal attributable to the Fe4S4 cluster is observed, suggesting that it is in
the diamagnetic +2 oxidation state. Mössbauer data have confirmed that the heme is
in the high spin +3 oxidation state, but have also shown that the iron ions of the
Fe4S4 cluster experience a magnetic hyperfine interaction, i.e., that the spin state of
the cluster is S = 5/2 as well [9.67, 68]. This can only occur if the two moieties,
heme and 4Fe-4S, are coupled. No detailed analysis of the data has been attempted,
but a model has been suggested according to which the four iron atoms of Fe4S4 are
strongly coupled to yield the usual S = 0 ground state, but they are also coupled to
the heme iron with smaller coupling constants.

One electron reduction of SiR causes loss of the ferriheme signals, thus showing
that the iron(III) of the heme is reduced. Addition of a second electron results in the
appearance of a novel EPR signal, with , 2.29, and 2.07.
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9.3.4  Nitrogenase

Nitrogenase comprises two extremely air-sensitive metalloproteins (Fe protein)
and one molybdenum iron protein (MoFe protein) [9.69]. The Fe protein accepts
electrons from oxidative processes operating at or below −0.4 V and then
specifically passes them on to the MoFe protein for use in the reduction of
dinitrogen and other substrates. The MoFe protein is a tetramer of molecular weight
220 000–240 000, containing 2 mol molybdenum, approximately 30 mol iron, and
approximately 30 mol acid-labile sulfur per mol peptide component.

One of the most prominent features of the MoFe protein is its EPR spectrum
[9.70, 71], shown in Fig. 9.10. The spectrum is typical of an S = 3/2 largely split in
zero field, with effective  values 4.3, 3.6, and 2. There is now evidence that this
spectrum is due to a multimetal cluster which is present in the active site of the
enzyme. Model compounds of formula [Fe(MS4)2]3− (M = Mo, W) were found
[9.72] to yield EPR spectra very similar to those of the enzyme.

Fig. 9.10. EPR spectra of A. vinelandii MoFe protein of nitrogenase at 2 K. A absorption derivative; B rapid
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passage dispersion. After [9.71]

Fig. 9.11. 57Fe ENDOR of MoFe protein of nitrogenase of: Avl, Azotobacter vinelandii; Kpl, Klebsiella
pneumoniae; Cpl, Clostridium pasteurianum. After [9.71]

Mössbauer spectroscopy indicated [9.73] that the multimetal cluster includes six
spin-coupled iron atoms. Crystallike ENDOR measurements [9.71] yielded the
hyperfine constants of 1H, 57Fe, 95,97Mo, and 33S, and helped to characterize the
polymetallic cluster. The studies were performed on proteins isolated from
Azotobacter vinelandii, Clostridium pasteurianum, and Klebsiella pneumoniae
and showed that the properties of the cluster are largely invariant to the origin of
the protein.

The 1H ENDOR suggested the presence of H2O or OH− bound to the cluster,
while the 57Fe spectra (Fig. 9.11) gave evidence that the six iron atoms present in
the cluster belong to at least five different sites and can be grouped into two classes
on the basis of their hyperfine coupling constants. These two types have been
suggested to correspond to high spin ferric and ferrous ions, respectively.

A 95Mo hyperfine was detected, showing that indeed molybdenum is integrated in
the cluster, but its small value suggests that molybdenum is in a nonmagnetic, even
oxidation state, probably Mo(IV). Finally, the 33S ENDOR signals have been
attributed to S2−.
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9.3.5  Iron-Binding Proteins Without Cofactors or
Sulfur Clusters

In this category are included all the iron proteins which, having different functions,
have in common the negative structural property that they do not have either a heme
group or a sulfur cluster. They include ferritins, which are widespread in plants,
animals, and protista as iron storage proteins; ribonucleotide reductase, which has
a central role in DNA synthesis; hemerythrin, which is the oxygen transport protein
in some invertebrates; uteroferrin, and the purple acid phosphatases, which catalize
phosphoester hydrolysis. All these proteins contain μ-oxo bridged iron atoms,
although additional bridging ligands may be present. For most of these enzymes
EPR has provided extremely important information.

Ferritin. Ferritin consists of a multisubunit protein shell, apoferritin, surrounding a
core of hydrous ferric oxide [9.74]. The core is variable in size, and may consist of
as many as 4500 atoms. The average composition of the core is
(FeOOH)8.FeO.OPO3H2. It has crystalline behavior, and its size has been estimated
to be 6400 ± 2000 pm.

There are still many problems related to the structure and to the way in which the
iron core is formed and depleted, and indeed ferritin is the most inorganic of the
metal proteins, with a chemistry which has been related to the chemistry of rust
[9.75]. Its magnetic properties are those of a superparamagnet. This means that the
iron centers are strongly coupled yielding a bulk ferromagnet. However, since the
domains are limited (the protein size is large but finite), the overall magnetic
behavior is that of a paramagnet, in which the individual magnets are indeed the
protein molecules.

Hemerythrin. Hemerythrin is an oxygen carrier protein which occurs in several
phyla of marine invertebrates. It occurs as either an octamer, a trimer, or a dimer of
almost identical subunits of molecular weight close to 14 000 [9.76]. The active
site contains two bridged iron atoms. The iron atoms are octahedrally co-ordinated
and they share three bridging ligands, namely an oxo group and two carboxylates
belonging to aspartate and glutamate residues. The structure of the binuclear iron
site in methemerythrin azide of Themiste discretum is shown in Fig. 9.12 [9.77]
(methemerythrin is the artificially oxidized form of hemerythrin). The two iron
atoms both have the oxidation number +3. The nonoxygenated form,
deoxohemerythrin, contains two iron(II) ions, while the oxygenated form contains
two iron(III) and a peroxide group. There is also a half-oxidized form of
deoxyhemerythrin, semi-met-hemerythrin, which has an iron(III) and an iron(II).

Apparently, the only EPR spectra which can be readily obtained are those of the
semi-met forms [9.78]. The so-called (semi-met)2 is obtained by one-electron
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reduction of methemerythrin, while (semi-met)0 is obtained by one-electron
oxidation of deoxyhemerythrin. They all have principal  values which are smaller
than 2, a result similar to that observed in ferredoxins. These values are readily
interpreted as due to an antiferromagnetic coupling between an iron(III) (S = 5/2)
and iron(II) (S = 2), yielding a ground S = 1/2 state.

Ribonucleotide Reductase. A similar μ-oxo-di-iron site seems to be present in the
ribonucleotide reductases, enzymes which catalyze the reduction of
ribonucleotides, the first step in the biochemical pathway leading to DNA synthesis
[9.79]. The best characterized at present is the enzyme of Escherichia coli, but also
several studies have been performed on mammalian enzymes. The Fe-O-Fe moiety
is EPR-silent, in agreement with magnetic susceptibility data, which suggest a
moderate antiferromagnetic coupling between two high spin iron(III) ions. It is
interesting to note that in the active site also a tyrosine radical is present, which
was identified by EPR as a phenoxyl radical [9.80]. Some sort of interaction of the
radical with the iron center has been evidenced by microwave saturation studies.

Fig. 9.12. Structure of the iron site of methemerythrin azide of Themiste discretum. After [9.75]

Uteroferrin and the Purple Acid Phosphatases. Purple acid phosphatases were
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first isolated from bovine spleen [9.81]. Although there are quite many
phosphatases [9.82], the so-called purple acid enzymes were first isolated only
after 1950. The purple acid phosphatases are characterized by their color, and by
the optimum pH of function, which is below 7. They are known to contain pairs of
iron atoms in the active site, and similar color and properties have been recently
discovered in a protein which is present in porcine uterine flushings, which was
called porcine uteroferrin [9.83]. Actually, these phosphatases can exist in two
interconvertible forms: purple, which is enzymatically inactive, and pink. The
former is obtained through an oxidation process, while the latter is obtained by
reduction [9.82]. The EPR spectra of pink uteroferrin are characterized by a
dramatic temperature dependence of the line width, and by a three-  value pattern
analogous to that already described for 2-Fe sulfur proteins. In Fig. 9.13 one such
spectrum is reported, showing the characteristic feature at . Magnetic
susceptibility data indicate a ground S = 1/2 state for the pink form of splenic acid
phosphatase, and a ground S = 0 for the purple form. It is thus generally accepted
that in the purple form, two high spin iron(III) are antiferromagnetically coupled,
while in the pink form antiparallel coupling of a high spin iron(III) and iron(II)
yields the ground S = 1/2 state [9.82].

Fig. 9.13. X-band EPR spectra of pink uteroferrin at 12 K. After [9.82]

9.4  Exchange-Coupled Species in the Photosynthetic
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O2-Evolving Complexes

We report here some of the information presently available on the photo-synthetic
process to show how effective EPR can be in providing hints to the nature of the
active sites in biological processes, but also to show imagination must necessarily
be a fundamental gift of researchers who want to study complex natural systems. In
the following many conclusions will be extremely tentative and far from the
elegance which can sometimes be attained in the study of simpler systems, but the
importance of the processes under scrutiny will certainly induce a not too severe
consideration in all the readers.

High plants can effect the photolysis of water to produce O2 and reduced
substances using sunlight. The reaction:

evolves four electrons, but in plant photosynthesis the electrons are transferred one
at a time. The overall process requires an energy transfer of 1.23 eV per electron.
The process is accomplished by two light reactions in series, each of which
absorbs one photon of at least 1.8 eV. The two light reactions are performed by two
systems, denominated photosystem one and two, respectively, PSI and PSII. The
process in PSII occurs through the generation of five intermediate oxidation states
known as Si (i = 0 to 4) states [9.84]. Both S0 and S1 are relatively stable in short-
term incubated PSII membranes, while S4 is relatively unstable and quickly
releases O2, cycling the system back to S0. S2 and S3 are powerful oxidants, but
they are stable for periods of the order of minutes at room temperature.

Manganese is known to be necessary to develop oxygen [9.85]. In fact, it has
been shown that algae cannot generate dioxygen if manganese is withheld from the
dietary medium; this capability is restored if manganese(II) is added. Subsequent
work has shown that indeed manganese species are present in the S2 species of
PSII. Using different experimental techniques [9.86–88], EPR spectra of the S2
state of the chloroplasts were obtained, showing a signal at , split into a
number of hyperfine lines (Fig. 9.14). Although the accounting of the lines is by no
means easy, because of the overlap with much more intense lines and the weakness
of the signals in the wings of the absorption, the EPR spectra clearly indicate that
the unpaired electron is interacting with more than one manganese nucleus and that
the nuclei are equivalent, at least on the EPR time scale. Beyond this signal at 

, another one at  was also observed [9.89].
The first proposals suggested antiferromagnetically coupled mixed valence

manganese dimers or tetramers [9.90, 91], but also a dimer MnIII–MnIV with
antiferromagnetic interaction, coupled to a third paramagnet with S = 1 was taken
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into consideration [9.88]. Up to now the most thorough attempt to justify all the
known spectral features, including the temperature dependence of the signal
intensities, has been made by Brudvig et al. [9.92], who have suggested a model
with four manganese ions bridged by four oxygen atoms in a cubane-type structure.
According to this proposal the species responsible for the EPR spectra contains
three manganese(III) (S = 2) and one manganese(IV) (S = 3/2). The coupling should
be strong antiferromagnetic within a manganese(III)-manganese(IV) pair; less
intense antiferromagnetic between the remaining manganese(III)-manganese(III)
pair, all the other interactions being ferromagnetic. Under these conditions the
ground state is S = 3/2, which split in zero field, might justify the  values at 2 and
4. The suggested order of levels is shown in Fig. 9.15.

Fig. 9.14. Dependence of the hyperfine structure of the S2 state EPR spectra of PSII membranes on
temperatures of illumination: a 200 K illuminated, 4h dark-adapted; b 160 K illuminated, 6 min dark-adapted; c
170 K illuminated, 6 min dark-adapted. After [9.88]

Research has been very active also on model compounds. An interesting EPR
spectrum was reported [9.93] for binuclear complexes Mn2(ASQ)4L2 (ASQ = 2-
acetyl-1,4-benzo-semiquinone, L = CO) in solution (Fig. 9.16). It is apparent that
the unpaired electrons interact with two equivalent 55Mn nuclei. The coupling
constant, A = 45 G, is half that expected for an isolated manganese(II) ion. The
reported assignment of all the spectrum to an S = 3 state, however, is less
convincing.
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The mixed valence bi-μ-oxo manganese(III)-manganese(IV) dimer
(bipy)2MnIII(O)2MnIV(bipy)2 is currently believed to be a reasonable model for the
biological bimetallic site [9.94]. In (bipy)2MnIII(0)2MnIV(bipy)2 the two metal ions
are different, with shorter bond lengths at the manganese(IV) site [9.95], as shown
in Fig. 9.17. The Mn-Mn distance is 271.6 pm. The magnetic properties of this
compound can be interpreted as due to an antiferromagnetic coupling between S = 2
[manganese(III)] and S = 3/2 [manganese(IV)]. J was calculated to be 300(14) cm
−1. The frozen solution spectra of the phenanthroline derivative, which are reported
to be practically identical to those of the (bipy) complex, are shown in Fig. 9.18.
Due to the strong antiferromagnetic coupling, which sets the ground S = 1/2 state ≈
450 cm−1 below the first S = 3/2 state, the observed spectra are only those of the
doublet. The analysis of the spectra yields an average  value of 2.003, and two
isotropic hyperfine coupling constants, with two unequivalent 55Mn nuclei: A1 =
167 ± 3G and A2 = 79 ± 3G. Equations (3.20, 22, 23) indicate that the following
relations must hold:

Fig. 9.15. Energy level diagrams for several exchange-coupling schemes of a 3MnIII-MnIV species. After
[9.92]

284



Fig. 9.16. X-band EPR spectra of Mn2(ASQ)4L2 in dimethoxy-ethane at UK. After [9.93]
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Fig. 9.17. Structure of (bipy)2MnIII(O)2MnIV(bipy)2. After [9.95]

Fig. 9.18a, b. EPR spectra of (phen)2MnIII(0)2MnIV(phen)2 in CH3CN at 18K. a True spectrum; b computer
simulation. After [9.94]
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Therefore, both the  and the A values of the two individual ions must be rather
close to each other. The larger hyperfine coupling in the dimer must be attributed to
the interaction with manganese(III).

The mechanism of bacterial photosynthesis is completely different from that of
plants. For the former the primary photochemical act involves the light-induced
electron transfer from a primary electron donor, a bacteriochlorophyll dimer, to a
primary electron acceptor [9.96]. The nature of the acceptor has been the matter of
some controversy, however, it seems that it contains an ironubiquinone complex in
which the metal ion and the radical are magnetically coupled. Indeed, the EPR
spectra [9.97] show one signal at , which is two orders of magnitude
broader than the value of the isolated ubiquinone. The  shift has been attributed to
the coupling to S = 2 of high spin iron(II).
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10 Low Dimensional Materials

10.1  Linear Chain Manganese(II)

Any review of the EPR spectra of linear chain compounds must necessarily start
from [(CH3)4N]MnCl3 or, in a form more familiar in the physical literature,
TMMC. Indeed, this is the first compound on which the one-dimensional properties
were studied [10.1] and even after about 20 years it is still an excellent testing
ground for all the refinements that new sophisticated theories are able to introduce
[10.2-4]. We have already used many of the TMMC data in Chap. 6, so that we will
add here only some more details.

Since manganese(II) is a 6S ion many of its magnetic properties are particularly
simple (isotropic g tensor, small single ion zero-field splitting, absence of
anisotropic and antisymmetric exchange contributions). A number of manganese(II)
compounds have been studied, including CsMnCl3.2H2O (CMC) and CsMnBr3. It is
important to recall here that ideal one-dimensional behavior is determined by a
one-dimensional structure and one-dimensional exchange pathways. In TMMC both
conditions are met, while in CMC the difference between the intra- and interchain
manganese-manganese contacts is much smaller, so that a less ideal behavior can
be anticipated. Some relevant structural and magnetic properties of these three
compounds are reported in Table 10.1. Since the ideal linear chain behavior will
be attained by a given compound when the ratio of the inter- and intra-chain
coupling constants J′/J tends to zero, it is apparent that TMMC is much better than
the other two in this respect.

It is perhaps useful to recall here the characteristics of a well-behaved linear
chain Heisenberg antiferromagnet: (1) the EPR spectrum consists of a single
exchange-narrowed line with angular dependence of |3 cos2Θ −1|4/3, where Θ is the
angle of the external magnetic field with the chain axis; (2) the line shape can be
described by the Fourier transform of exp(−t3/2) at Θ = 0° and by a Lorentzian
function at the magic angle Θ = 54.7°; (3) the magic angle line-width is
proportional to the inverse square root of the microwave frequency; (4) at Θ = 90°
the line width increases with increasing frequency (inverse 10/3 effect); (5) in
addition to the main line, a half-field transition can be observed. All these
properties together are rarely met, and practically only TMMC behaves in this
manner.

Beyond those already reported, of interest are the studies of TMMC and CMC
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doped with other transition metal ions. Indeed, the effect of doping must be
expected to be much more intense in one-dimensional, as compared to three-
dimensional systems, because impurities can block, or at least slow down, the
efifective rate of spin correlations, as was suggested in Section 6.4. Therefore, the
lines must be expected to broaden and other dimensional effects such as shifts and
satellite lines should be amplified by doping.

Table 10.1. Structural and magnetic properties of three manganese(II) linear chain compounds

Studies of TMMC doped with both diamagnetic and paramagnetic impurities,
such as copper(II), showed that the effect is essentially the same for both types of
dopants, because the Mn-Cu interaction is small. In Fig. 10.1 is shown the
dependence on the doping level of  of TMMC at room temperature and X-
band frequency [10.14] for Θ = 0° and 90°, respectively. It is apparent that the line
width goes through a maximum at both angular settings for x ≈ 0.25 (x is the doping
level defined by the formula [(CH3)4Mn1 − xCuxCl3)]. This behavior is easily
understood using a simple model which cuts the chain into segments of the type. . .
Mn–Mn–Mn . . , . . . Cu–Mn . . . Cu–Cu . . . Within each of these segments the decay
of the spin correlation function is expected to be proportional to (Dt)−1/2, where D,
the spin diffusion coefficient, is proportional to the coupling constant. For the chain
an effective spin diffusion coefficient may be defined as a function of the diffusion
coefficients in each different segment:

The linewidth under this assumption is given by:

where M2(x) is the second moment, which will be a function of the composition x.
Considering that the manganese spin is much larger than the copper spin, and that
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the second moment depends on [S(S + 1)]2, we see that on doping the second
moment can be considered to be reduced by a factor (1 — x), because only the
manganese segments contribute to it. As a consequence of this, on a qualitative
basis, we can say that in order to have a maximum in the line width for x = 0.25,
1/D(x) must increase on increasing x. On a quantitative basis using (10.1-2) the line
width can be expressed as:

Fig. 10.1. Variation of the line width vs copper concentration in copper doped TMMC. The curves are
calculated according to Eq (10.2). After [10.14]

where  is the line width for the undoped TMMC. In order to arrive at
(10.3) the spin diffusion coefficients for the manganese and copper segments have
been expressed as:
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where the exchange-coupling constant is in Kelvin. DMn–Cu is taken as DMn–Cu =
aDMn, where a is an adjustable parameter. In (10.4) and (10.5) JMn and JCu are the
coupling constants for the pure manganese and copper salts, respectively, whose
experimental values are 9.3 and 63 cm−1. Using (10.3–5) and the experimental line
widths, the diffusion factor in the Mn–Cu segments has been estimated to be: DMn–

Cu = 1.48 K. If the simplest possible relation is assumed for JMn–Cu:

then we obtain JMn–Cu = 0.6 cm−1 which is smaller than the value obtained from
magnetic susceptibility and Neel temperature measurements (1.95 cm−1).

This simple model, however, breaks down for measurements at the magic angle,
because in this case the linewidth keeps increasing with x up to the largest
available value (x ≈ 0.5).

Doping TMMC with 20% Cd2+ the spectrum with the static magnetic field
recorded parallel to the chain axis shows (Fig. 10.2) a central line attributed
[10.15] to single ion resonances and to short chains of Mn2+ ions. The symmetrical
structure of ten lines which is superimposed on it is attributed to ion pairs which
have total spin states S = 5, 4, 3, 2, 1, and 0. The d and b lines are attributed to S =
5, c to S = 4 and S = 2, a and e to S = 3. The spectra yielded the single ion zero
field splitting, D = 0.007(2) cm−1 and the dipolar term, Ddip = 0.0566(9) cm−1

which agree well with the values obtained by doping [(CH3)4N]CdCl3 with Mn2+

[10.16, 17].
CsMnBr3 is a good example of a less ideal manganese(II) linear chain

compound. It shows [10.12] the angular dependence of the line width featured in
Fig. 10.3. The experimental points were recorded at three different frequencies. At
low frequency, 8.82 GHz, the line width has a minimum at 90°, contrary to the
expected one-dimensional behavior with a minimum at the magic angle. This
minimum is reestablished at higher frequencies (35.52 and 72.15 GHz), but the
angular dependence can be described by the function:
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Fig. 10.2. Single crystal EPR spectrum of cadmium-doped TMMC at room temperature. The static magnetic
field is parallel to the chain axis. After [10. 15]
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Fig. 10.3. Angular dependence of the line-width of CsMnBr3 at room temperature and three different
frequencies:  8.82 GHZ,  35.52 GHz,  72.15 GHz. After [10.12]

rather than by . No satellite half-field transition could be
detected, even at the lowest frequency, and the lines are much narrower in
CsMnBr3 than in TMMC. Therefore, from both angular dependence and line shape
no support for the one-dimensional behavior of CsMnBr3 is obtained. However, the
frequency dependence of the line-width at the magic angle shows that it is indeed a
linear chain.

Another system, which has been less well characterized, but has been reported to
show the characteristic  behavior is Mn(py)2Cl2 [10.18].
[(CH3)3NH]MnCl3.2H2O shows angular dependence which was interpreted as due
to the sum of two contributions, one relative to the usual dipolar broadening, and
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the other relative to the single ion zero field splitting [10.19].

10.2  Linear Chain Copper(II)

A few systems involving copper(II) ions have been investigated. Generally, the
one-dimensional behavior of these is less well established than in the
manganese(II) compounds, and several complications, including g and A
anisotropy, are present and make the analysis of the spectra more complicated. One
of the best examples of one-dimensional behavior in copper(II) complexes is
provided by copper(II) benzoate trihydrate, Cu(benz)2.3H2O. Each copper ion is
bound to two oxygen atoms of two different benzoate anions, each benzoate
bridging two copper ions [10.20] as shown in Fig. 10.4. Half of the benzoates are
not bound to copper and the coordination polyhedron around the metal ion is
completed by four bridging water molecules. The intrachain copper-copper
distance is 315 pm, while the shortest interchain copper-copper contact is 698 pm.

The chain direction is parallel to the c axis of the monoclinic cell. The molecular
z axes are not parallel to this, but they lie approximately in the ac plane, making an
angle of 38° with c. The coupling was found to be antiferromagnetic [10.21], J = 12
cm−1. The angular dependence of the line width of the EPR spectra [10.22–23] is
shown in Fig. 10.5. The analysis of these data has been performed with a model
which includes the dipolar interaction, as well as the anisotropic exchange and the
hyperfine interaction. The second moments of each of these interactions have been
calculated and the experimental line width has been expressed [10.23] as:

in the assumption of a Lorentzian line shape as experimentally observed. The
second moments were expressed as:
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Fig. 10.4. Scheme of the unit cell of Cu(benz)2.3H2O. After [10.20]

297



Fig. 10.5. The experimental and theoretical line width data for Cu(benz)2.3H2O. The rotation angle is from a in
the ac plane. After [10.23]

where  and  are the calculated full and secular second moments,
respectively, τ is a parameter, which accounts for the increased role of secular
terms in one dimension. For τ = 0, Eq. (10.9) yields the usual three-dimensional
behavior, while when τ is large, the angular dependence is dominated by the
secular components, τ values of order of unity are consistent with Lorentzian lines,
and slightly enhanced secular components.

The expressions for the various components of M2 were given in Chap. 6. Care
must be taken to consider the different principal directions of the various terms
responsible for the broadening of the lines. For Cu(benz)2. 3H2O the angular
dependence of the experimental line width was reproduced using the parameters,
Dex = 0.125(15)cm−1 and τ = 1.0(2), where Dex is the zero field splitting parameter
associated with anisotropic exchange. The other parameters (Ax, Ay, Az, Dd for the
dipolar interaction, J) were fixed at the values experimentally observed.

An interesting observation to be made here is that since Ddip and Dex are
diagonal in different reference frames, the presence of anisotropic exchange limits
the one-dimensional behavior. In fact, the largest deviations from Lorentzian line
shapes are expected parallel to the chain direction, where the intrachain dipolar
interaction reduces to the purely secular component. However, in general, Dex will
not have its z axis parallel to this, and nonsecular components are thus
reintroduced. The only case in which the two contributions add up positively to
yield one-dimensional behavior is when the two tensors are parallel to each other.
An example is provided by CuSALMe, where SALMe is the Schiff base formed by
methylamine and salicylaldehyde [10.24]. In this case the planar CuSALMe
molecules are stacked on top of an other [10.25] so that the z molecular axes and
the chain axis are practically coincident. The copper-copper distance along the
chain is 333 pm, while the shortest interchain copper-copper separation is 919 pm.
The line width at 76 K was found to follow a  behavior, and the
line shape along the chain was found to correspond nicely to the Fourier transform
of .

Copper pyrazine nitrate, Cu(pyz) (NO3)2, is a one-dimensional antiferromagnet
[10.26], but the EPR spectra do not show the classic one-dimensional dependence
of the line width [10.23]. Indeed, as shown in Fig. 10.6, the line width does not
show magic angle behaviour in any of the three principal planes. The unit cell is
orthorhombic [10.27] and each copper ion is coordinated by two nitrogen atoms of
two pyrazines and two oxygen atoms of two nitrate ions on the vertices of a square
plane. Two additional axial sites are occupied by two other nitrate oxygens at a
longer distance (Fig. 10.7). In principle there are two possibilities for the magnetic
exchange pathway defining the chain direction: one is through the pyrazine bridge
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(copper-copper separation of 671.2 pm along a), the other through nitrate ions
(copper-copper separation of 514.2 pm along b). The molecular coordination plane
is almost parallel to the ac plane, so that the z molecular axis is practically parallel
to b. According to this structure, one can anticipate that A, Ddip, and Dex all have
the largest component parallel to b, and indeed experimentally the line width has its
maximum parallel to b. The expressions for the second moment are split into two
summations, one relative to the sites that are exchange-coupled to the reference
spin, and the other to those which are not. For the former both dipolar and
anisotropic exchange interactions must be included, while for the latter only dipolar
coupling is operative. Therefore, if the strongest exchange is parallel to a, the
anisotropic exchange is expected to have its largest contribution orthogonal to the
chain, while if the strongest exchange is parallel to b, the largest contribution is
parallel to the chain. It is possible, therefore, to differentiate the two possible
exchange pathways, because inclusion of Dex gives different values in the two
cases. Indeed, for Cu(pyz)(NO3)2 the best fit to the experimental data was achieved
assuming that the pyrazine bridge is most effective in transmitting the exchange
interaction. Like in the cu(benz)2.3H2O case the experimental data were fitted with
the two parameters Dex = 0.128(15) cm−1 and τ = 0.18(8). Although the value of
Dex is fairly large for two copper ions separated by more than 500 pm, it is
comparable to the values observed in pairs of copper ions bridged by triazolato
ligands.
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Fig. 10.6. Angular dependence of the line width of Cu(pyz) (NO3)2 at room temperature and X-band
frequency. After [10.23]
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Fig. 10.7. The structure of Cu(pyz)(NO3)2

In Cu(py)2Cl2 (py = pyridine) the line width is dominated by the inequivalence of
the magnetic chains. In fact, in the monoclinic cell there are two chains [10.23, 28],
oriented in such a way that the z molecular axes form an angle of ca. 47° [10.29]. In
the absence of interchain exchange two lines should be observed, but
experimentally only one line is observed at both X- and Q-band frequency. Since
the lines are considerably broader at Q-band, the interchain coupling constant could
be estimated as j′ = 0.22 cm−1, assuming knowledge of the g anisotropy of the two
chains.

Several copper halide derivatives with different cations have been reported to
show one-dimensional behavior [10.30–31]. For instance in bis-piperidinium
tetrachlorocuprate(II) [10.32] the exchange-coupling constant was determined to be
1.1 cm−1, and a  behavior of  was observed at 90 K, while
the complex angular dependence in [(CH3)3NH]CuCl3.2H2O was interpreted within
the same model described above [10.33].

[(C6H11NH3)CuCl3, CHAC, and [(C6H11NH3)CuBr3], CHAB, have been shown
to behave as linear chain ferromagnets with J ≈ 70–100 cm−1 [10.34]. The line
width follows a  dependence, and the line shape is Lorentzian at all the
angular settings. This is presumably due to the noncollinearity of the dipolar and
anisotropic exchange tensors. However, at low temperature large  shifts are
observed [10.35, 36], as a consequence of the ferromagnetic nature of the
intrachain interaction. Indeed, using the model outlined in Chapter 6, one
anticipates an increase in the resonance field along a hard axis and a decrease
along an easy axis. By experimentally measuring the resonance field shifts the
directions of the axes were determined. The  shift along the three principal axes,
ξ1, ξ2 and ξ3 is shown in Fig. 10.8. ξ3 corresponds to the chain axis. In CHAC the
hard axes correspond to ξ1 and ξ3 showing that the exchange is of the Ising type,
with the easy axis along ξ2, which corresponds to the direction of the z molecular
axis. For CHAB also ξ3 is an easy axis, indicating that the anisotropy field is of the
XY type.

Copper maleonitrilethiolates, [Cu(mnt)]2− provide interesting examples of one-
dimensional  in which EPR has been fundamental in determining the weak
Heisenberg coupling. Accurate data have been reported for both the [NMe4]
[10.37] and the [N(nBu)4] derivatives [10.38]. The former is monoclinic [10.39],
with a copper-copper intrachain distance of 781.1 and 784.1 pm, while the latter is
triclinic [10.38] with an intrachain distance of 940.3 pm. The exchange-coupling
constant in [NMe4] [Cu(mnt)] has been determined to be 0.112 cm−1 at room
temperature, and to increase steadily as the temperature is lowered [10.37]. On the
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other hand, in [N(nBu)4]2[Cu(mnt)] the room temperature exchange is ca. 0.04 cm−1

[10.38]. The smaller value can be justified on the basis of the longer metal-metal
distance observed in the latter compound. However, it is interesting to note that J
decreases with temperature for [(N(nBu)4]2[Cu(mnt)] to a low value of 0.0107 cm
−1 at 4.2 K. Under these conditions the exchange interaction can be smaller than the
hyperfine splitting, which along z is 0.0161 cm−1. Therefore, the EPR spectra at
liquid helium temperature are particularly complex (Fig. 10.9). Indeed, since
exchange is smaller than the hyperfine splitting, each site along the chain will be
characterized by a given M1 value, and sites with different M1 must be considered
as different. Therefore, the chain can be assumed to be formed of segments within
which adjacent spins have the same M1 value, according to the scheme shown
below:

Each segment will provide a different kind of a spectrum which can be calculated
assuming that the different segments are statistically determined. The probability of
having a segment of length N is given by:
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Fig. 10.8. Temperature dependence of the resonance fields for CHAC and CHAB, v = 18.3 GHz. After
[10.36]
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Fig. 10.9. EPR spectrum of [N(tBu)4]2 [Cu(mnt)2] at 4.2 K with B parallel to the z molecular axis. A
Experimental; B simulated; C stick plot. After [10.38]

where N = 1, 2, . . . ∞. The condition that the total number of sites is conserved
imposes:

The number of segments which can be relevant statistically is limited and it is
possible to calculate the whole spectrum. The result is that the effect of J in this
case is that of producing splittings of the spectra, and its value can now be directly
estimated rather than obtained indirectly from line width analysis, as we described
in the other cases.

10.3  Two-Dimensional Manganese(II)

K2MnF4 has the structure shown in Fig. 10.10. It is orthorhombic [10.40] with the
manganese(II) ion coordinated to six fluoride ions. The four bridging fluorides
define a plane which is orthogonal to the tetragonal axis c = 1314 pm. The shortest
interplane contact is 720 pm. K2MnF4 is an antiferromagnet, with a Neel
temperature of ca 45 K [10.41]. It is part of an extensive series of metal fluorides
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which have interesting magnetic properties [10.42]. The angular dependence of the
line width is in agreement with a dipolar broadening and a two-dimensional
behavior [10.43], obeying a law of the type:

Fig. 10.10. Structure of K2MnF4. After [10.40]

where Θ is the angle from the perpendicular to the plane. The line shape is
Lorentzian at the magic angle, while at Θ = 0° it is the Fourier transform of exp[–
At In At – Bt0] where A, B, and t0 are parameters depending on the two-spin
correlation function and on the correlation time. As in the one-dimensional case the
line shape is intermediate between Lorentzian and Gaussian, although closer to the
former. It is important to note that the actual shape strongly depends on A/B,
therefore it is not possible to give a universal curve for Θ = 0°.

A similar behavior has been observed also in other two-dimensional salts, such
as [CH3NH3]2 MnCl4 and [C2H5NH3]2 MnCl4 [10.43, 44],
[C2H5NH3]2MnBr4[10.45], and Mn(HCOO)2.2H2O [10.46, 47].
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10.4  Two-Dimensional Copper(II)

There are quite a number of two-dimensional copper(II) magnets because many
copper halides, with different cations [Cat]2[CuX4], (X = Cl, Br), possess layered
structures [10.48]. In general, in all the systems studied the angular dependence of
the line width does not show any particular effect which can be attributed to an
increased role of the secular terms, and the lines are within error lorentzians.

The most obvious reason for this is that in two-dimensional magnets it is
comparatively more difficult than in one-dimensional magnets to have
simplification in the expressions of, e.g. the dipolar second moment analogous to
the one for which all the Θij’s are identical (Θij = Θ) for one dimension. Thus, there
are different angular contributions which quench the secular components.

Lacking any particular interest in this respect on the spin dynamics in these
compounds, the major interest has focused on the temperature dependence of the
line width. In fact, for most of these compounds,  was found to decrease
linearly with temperature in the range above the transition to the ordered state. Such
a behavior has been found, for instance, in K2CuCl4.2H2O [10.49, 50],
Cu(HCOO)2.4H2O [10.51], Cu(HCOO)2.2(NH2)2CO.2H2O [10.52], and in many of
the layered tetrahalides [10.48],

In Cu(HCOO)2.4H2O each copper is coordinated to four oxygen atoms of four
different formiate anions, which bridge two different copper ions [10.53]. These
molecular planes define a layer parallel to the ab crystallographic plane of a
monoclinic cell. The coordination around copper is completed by two water
molecules, which are connected to other water molecules in a layer which is
interposed between the copper layers. The line width decreases linearly with
temperature in the range 50–300 K. This behavior has been attributed [10.50] to
phonon modulation of the antisymmetric exchange, which can occur between pairs
of copper ions not related by an inversion center. A quantitative analysis yielded
d/J ≈ 0.005, which is roughly 20 times smaller than one would obtain from
Moryia’s estimate . A similar behavior was observed in the analogous
Cu(HCOO)2.2(NH2)CO.2H2O.

Layered [Cat]2[CuX4] salts are the most numerous group of two-dimensional
copper(II) magnets. They all have a structure formed of layers such as those
depicted [10.48, 54] in Fig. 10.11. Each copper is coordinated to 4 + 2 chlorides,
the long bonds lying in the plane of the layer. The isotropic coupling is
ferromagnetic. A detailed analysis of the EPR spectra was performed by Soos et al.
[10.54] for [Pt(NH3)4]CuCl4 and [H3N(CH2)3NH3] [CuCl4]. They included dipolar,
anisotropic, and antisymmetric exchange interactions to analyze the line widths.
Using the formulae of Sect. 6.3 they could show that dipolar, hyperfine, and g
tensor contributions to the second moment are negligible, and included only the
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anisotropic and antisymmetric exchange:

where A and S refer to antisymmetric and symmetric, respectively, J is the isotropic
exchange constant, χc is the Curie susceptibility, and χ(T) is the true susceptibility
at the temperature T, FA and Fs are factors describing the static spin correlation due
to the isotropic exchange, related to the two-spin correlation functions

where cn indicates

Fig. 10.11. Schematic representation of the  layer and the polar coordinates of the magnetic field.
After [10.54]

The temperature dependence of F1(kT/J)χc/χ(T), I = A, S is shown in Fig. 10.12 for
a square planar ferromagnet. Since for kT > J the dependence is linear, the
observed temperature dependence of  is justified.
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The angular dependence of the anisotropic exchange part of the second moment
is given by:

where z is the number of nearest neighbors, and Dex is the anisotropic exchange
parameter. Θ is the angle from the normal to the layer. In (10.17) it was assumed
that no secular enhancement is operative, in accord with experimental data.

The corresponding term for the antisymmetric exchange is given at high
temperature by:

in the assumption of d lying in the layer, and

for d orthogonal to the layer.
The experimental angular dependence for [Pt(NH3)4] [CuCl4] is shown in Fig.

10.13. It is apparent that  is smaller at Θ = 0° than at Θ = 90°. Therefore, the
high temperature data, where FA(kT/J) ≈ Fs(kT/J) ≈ 1 are simply interpreted using
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Fig. 10.12. Effect of static spin correlations in the square planar ferromagnet on the second moment of
symmetric, Fs, and antisymmetric, FA broadening perturbations. After [10.54]

Fig. 10.13. Angular dependence of the line width of [Pt(NH3)4] [CuCl4] at 300 K. Θ is the angle of B with the
normal to the copper plane. After [10.54]

with c > 0 when the anisotropic exchange dominates and c < 0 when the
antisymmetric exchange dominates. The ratio between the experimental line width
at Θ = 0° and Θ = 90° yields an estimation of the d/D ratio:

From the experimental value of c = −0.22 for [Pt(NH3)4][CuCl4] (d/D)2 was
estimated to be ≈ 6.

The same type of analysis has been applied to several other layered
chlorocuprates. In general, the same kind of angular dependence was evidenced.
The most notable exception is [βalaH]2[CuCl4] (βalaH = β-alanine) [10.55, 56],
where a non-negligible secular component (3cos2 Θ – 1)2 was found to be present
in the angular dependence of the line-width. The bromide salts have been found
generally to have a much larger dependence of the line width on the temperature
than the chlorides. This has been attributed to the role of the large spin-orbit
coupling of the bromide, which determines a more effective phonon modulation
[10.57].

Although this model is certainly appealing, it cannot be considered as absolutely
convincing. In fact, it affords a useful means to calculate d, which is a very elusive
quantity. However, this is also an intrinsic weakness of the model, because it
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cannot have independent checks, either experimental, because no other technique is
easily available to measure d, or theoretical, because at present, and perhaps for
many years to come, there is no way of calculating d.

As a confirmation of these doubts we must recall here that other justifications
have been put forward to justify the linear dependence of  on temperature.
Among these, one which has been worked out in some detail, is the temperature
dependence of the isotropic exchange. Indeed, there is evidence in the literature that
the interchain and the interlayer interaction may be temperature-dependent. One
such example is K2CuCl4.2H2O, which contains two magnetically non-equivalent
chains, which can be characterized by two  values,  and . For exchange
energies less than , two resonances are observed. By
measuring the magnetic field at which the two lines coalesce, it is possible to
obtain J. For this particular compound J was found to decrease with increasing
temperature in the range 77–300 K. The ratio J(300)/J(77) is ≈ 1/5. This is not the
only data of this kind, because similar results have been observed for other
transition metal complexes. On this basis it was concluded that also phonon
modulation of the isotropic exchange can be responsible for the temperature
dependence of the line width. The effect of phonon modulation was estimated
through a simplified model, which assumes an exponential dependence of J on the
distance between the paramagnetic centers. The model has been applied with some
success to some layered copper(II) compounds [10.58].
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11 Excitons

11.1  Introduction

In the previous chapters we have taken into consideration magnetic interactions in
insulators. The EPR spectra of conductors are much different, often corresponding
to Pauli paramagnetism, and they cannot be interpreted within the scheme of weak
magnetic interactions. Between insulators and conductors there are, of course,
semiconductors. They often show EPR spectra which are not too dissimilar from
those of insulators, although their detailed interpretation shows the role of electron
delocalization. In particular, many organic molecular semiconductors at sufficiently
low temperatures show triplet spectra, which in a first approximation can be
considered as arising from the exchange interaction between neighboring centers
[11.1–3]. These interactions, however, are not always localized between adjacent
centers and their accurate description requires the use of a number of concepts on
the band theory of solids. In the language of the band theory of solids these
phenomena take the collective name of excitons, and they are not restricted to
semiconductors but can be found also in insulators [11.4–5]. In the next section we
will briefly introduce the concept of exciton using elementary band theory concepts,
and in the following part of the chapter we will work out some examples where the
close similarity of the spectra of some excitonic systems to the spectra of extended
lattices reported in Chaps. 6 and 10 will be apparent.

11.2  Excitons

Among the elementary excitations in semiconducting solids, the one which involves
the transition of an electron from the filled valence band to the empty conduction
band requires the creation of an electron-hole pair. The electron is in the
conduction band and the hole is left in the valence band. When the electron-hole
interaction is taken into account, a number of energy levels in the energy gap
between the valence and the conduction band are generated. These levels are called
exciton states, and the interacting electron-hole pair is called an exciton.

In a number of cases the electron and the hole are separated by several lattice
constants and their interaction is conveniently represented as a purely electrostatic
interaction between particles with opposite charges. These types of excitons are
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called Wannier-Mott excitons and their motion is well represented as the motion of
a quasi-particle of effective mass μ* moving in a homogeneous dielectric
[11.6–18].

In the case where the electron and the hole are localized on the same or on an
adjacent lattice position we have a strong electron-hole interaction and excitons of
this type are called Frenkel excitons. The most important property that Frenkel and
Wannier excitons have in common is the possibility of successive transfer of energy
from one lattice site to another, as a consequence of the translational symmetry of
the wave function. We can say that the excitons move through the solid.

Excitons are a collective excited state of a solid and, in principle, one can expect
an excitonic system when in the solid molecules are present with available excited
states which can also interact with each other and transmit the excitation through the
entire crystal. Common examples of excitonic systems are given by organic crystals
and the excitons in these systems take the name of molecular excitons [11.4].
Examples of molecular organic crystals are the crystal of benzene or naphtalene or
other aromatic systems. These are insulating solids in which the organic molecules
weakly interact with each other through van der Waals forces. If one can excite in a
molecule an electron from the ground into an excited state, this excitation is not
localized on one particular site of the crystal, but due to the interaction between
molecules in the crystal, it is delocalized over the entire crystal. In other words, if
N is the number of molecules forming the crystals with one molecule in the unit cell
and we have the possibility of forming only one excited state per molecule, we
have N excited crystal states. These states form a band of states and the width of
this exciton band depends on the strength of the intermolecular interactions. When
more than one molecule is present in the unit cell, it has been shown that more than
one band corresponds to any excited molecular state. In the particular case of two
independent molecules per unit cell, the exciton bands are split into two bands
separated in energy. This energy separation is known as Davidov splitting [11.8]. In
benzene crystals the Davidov splitting of the singlet excitons was found to be ≈ 40
cm−1.

Up to this point we have never explicitly considered the spin of the excitons. In
molecular crystals one can have both singlet and triplet excited states. For example
in benzene or other aromatic molecules, transitions between the ground singlet state
and excited triplet states are allowed by spin-orbit coupling and, therefore, triplet
states can be populated via photoexcitation. Since direct transitions toward the
ground singlet states are spin-forbidden, these triplet states can have a lifetime
longer than that of the singlet-singlet excitations. The decay of the molecule from
one triplet excited state into the singlet ground state can occur radiatively by
emission of radiation. This phenomenon is known as phosphorescence. The lifetime
of phosphorescent organic crystals can range from 10 to 10−3 s. EPR spectra from
the triplet states of photoexcited organic systems have been measured since 1959
and are still being extensively studied [11.9–12].
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Other systems in which triplet excitons have been investigated through EPR
spectroscopy are the segregated stack charge transfer (CT), organic solids and the
organic free radical systems. Organic CT solids which present exciton states are
generally formed by π molecular organic acceptors like tetracyanoquinodimethane
(TCNQ), chloranil, tetracyanobenzene (TCNB), and donors like tetrathiafulvalene
(TTF) or N, N, N′, N′-tetramethyl-p-phenylenediamine (TMPD). The acceptors (A)
and donors (D) in the crystals, which give rise to triplet exciton spectra, are
disposed into alternating (dimerized, trimerized, tetramerized) segregated stacks
containing all A′s or D′s. In these systems triplet exciton spectra have been
observed both from free excitons [11.1] and from excitons trapped in impurity
centers (exciton traps) [11.13].

It is apparent from the above introduction that a detailed description of the
exciton nature and dynamics is beyond the scope of the present book. In the
following we will limit ourselves to a qualitative description of the effect of the
exciton motion on the EPR spectra of triplet excitons in those systems where the
triplets can be viewed as generated by exchange interaction between neighboring
centers.

11.3  EPR of Triplet Excitons in Linear Organic
Radical Systems

A number of solids containing linear chains of planar organic radicals stacked face
to face have been synthesized from the beginning of 1960 up to now. These
compounds range from insulators to magnetic semiconductors and spin correlation
in these systems has been extensively studied. Some review articles dealing with
the structure and properties of linear organic radical solids can be found in Refs.
[11.1, 11.14–17].

One of the most thoroughly studied systems is that formed by the TCNQ
molecules, whose structure is illustrated in Fig. 11.1. The π molecular electronic
system can easily accept one electron to form the stable radical anion TCNQ−.
These anions tend to stack one over an other to form segregated stacks of planar
molecules. The negative charge is stabilized by either simple M+ cations (M = Na,
Cs, Rb, NH4) or more complex molecular systems like cationic complexes.

The TCNQ-containing compounds show a large variety of structural motifs and
exhibit a number of different magnetic and electrical properties. They range from
metallike substances with temperature independent paramagnetism to essentially
diamagnetic materials of low electrical conductivity. In a number of these
compounds a paramagnetism attributable to thermally accessible triplet states was
observed and EPR spectra characteristic of mobile S = 1 spin excitations have
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been measured [11.18–26]. As a consequence of the large variability in the
physical properties, these compounds have been studied by a number of
investigators and several theoretical models have been suggested to account for
their properties. Among these models we may cite the singlet-triplet model [11.1,
23], the collective electronic state theory [11.22, 27, 28], the linear Heisenberg
antiferromagnet [11.29], the Hubbard model [11.30], and the band structure model
[11.31]. It is apparent that we cannot discuss the details of the above models here
or make a full comparison among the different theories, but we will limit ourselves
to a description of the EPR spectra observed in these compounds in order to show
the nature of the information which can be derived from the electronic structure
using EPR spectroscopy. The connection between the measured quantities and the
electronic nature of the materials will, of course, depend on the particular model
used.

Fig. 11.1. Structure of tetracyanoquinodimethane, TCNQ.

In the following we will focus our attention mainly on salts of the TCNQ− anion,
which show most of the EPR characteristics of triplet excitons. In the crystal
structures of TCNQ− salts two main stacking motives (Fig. 11.2) have been
observed, namely the ring-to-ring (R–R) and the ring-external bond (R–B) stacking.
More complex moieties have also been found, e.g., stacks of  radicals,
etc. In these complex salts the stacking units contain both charged and neutral
TCNQ molecules. In Fig. 11.3 we schematically show the linear arrangement of
planar organic molecules. In Fig. 11.3a the molecules stack face to face in a regular
arrangement and each molecule equally interacts with two adjacent molecules. This
arrangement is generally less stable than that shown in Fig. 11.3b, which can be
described as a stacking of dimeric units in which each molecule interacts more
strongly with one of its nearest neighbors. A typical example of regular stacking is
given by the room temperature structure [11.32] of Rb[TCNQ]2, while at
temperatures lower than 213 K a dimerized structure is preferred [11.33].

The TCNQ salts, and generally organic molecular crystals, can be described as π
molecular crystals with tightly bound electrons and small π electron intersite
differential overlap. Not all of the TCNQ salts show triplet exciton spectra:
excitonic states generally occur when the crystal lattice geometry favors a singlet
pairing of electrons on neighboring molecules. In this situation an excited triplet
state is available on each pair of molecules as a consequence of the exchange
interaction. The following general features are common to most compounds as well
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as to CT and molecular crystals: (1) the triplet exciton band-widths are large
compared to nuclear hyperfine interactions and the EPR spectra will not show any
nuclear hyperfine structure; (2) the Davidov-type splitting of the triplet exciton
bands is large compared to the fine structure splitting of the S = 1 spin state; (3)
there is only a weak dependence of the fine structure splitting on the k vector of the
exciton band and the observed splitting is a thermal average over the possible k
states.

Fig. 11.2. Two typical arrangements of the TCNQ molecules found in the crystal structure of TCNQ− salts

Fig. 11.3a, b. Schematic view of two possible arrangements of planar organic molecules to form a linear chain,
a Regular arrangement; b dimerized stacking

One of the fundamental points in choosing the theoretical model to account for
the magnetic properties of TCNQ salts is the amount of energy required to form the
excited charge transfer state TCNQ2−. This state is formally obtained through the
reaction

in which one electron is removed from one TCNQ− anion radical onto the nearest
neighbor ion.
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In the case of zero or a small energy difference a band model or a Hubbard
hamiltonian should be appropriate, while in the opposite case a Heisenberg linear
chain model could be applied. Kommandeur et al. concluded that in the alkali salts
of TCNQ− this energy should be nearly zero and developed a band model to
account for the observed magnetism [11.31–34]. EPR spectra were generally
interpreted within the framework of an approximate Hubbard model [11.30–35].
Soos et al. applied the linear Heisenberg theory quite successfully to interpret both
the EPR spectra and magnetic properties of a number of TCNQ− salts [11.29, 36].

As long as the EPR spectra are concerned, at sufficiently low temperature, they
show a fine splitting and can be interpreted using the S = 1 spin hamiltonian

with a nearly isotropic g tensor with . In any case no hyperfine structure
was resolved. On increasing the temperature the EPR lines broaden and the fine
structure splitting decreases until the spectrum collapses into a single broad line,
which eventually becomes narrower at higher temperature. This temperature
dependence of the EPR spectra has been ascribed to the presence of Frenkel-type
triplet excitons. A typical example of the spectrum is shown in Fig. 11.4.

Wannier spin excitons are expected to be delocalized onto nonadjacent
molecules causing a smaller, fine structure splitting which cannot be observed.
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Fig. 11.4. Temperature dependence of the triplet exciton EPR spectra in a single crystal of (Ph3AsCH3)
(TCNQ)2. The orientation of the crystal in the magnetic field is fixed, but the spectrometer gain is varied. After
[11.24]

A strong  line is often present at any temperature, the nature of this signal
will be briefly discussed at the end of the chapter.

A property of the Frenkel spin excitons is that they are self-trapped, i.e., the
triplet excitation is accompanied by a local lattice distortion. The observation of
triplet resonances in Wannier-type triplet excitons as well as in certain charge
transfer organic solids, often requires the presence of a trapping center which could
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stop the excitation in a particular point of the crystal.
In Fig. 11.5 we show an energy level diagram computed by Hibma et al. using an

approximate Hubbard hamiltonian for a chain of interacting TCNQ− dimers for k =
0 [11.35]. Using a Hubbard hamiltonian the energies of the states are parameterized
by three parameters: t1, t2, and U. The ti’s are nearest neighbor transfer integrals and
U is the effective repulsive energy between two electrons on the same molecule to
form a TCNQ2− ion. An analytical expression for the eigenvalues of the Hubbard
hamiltonian was found for  i.e., for a chain of interacting dimers. In Fig.
11.5 ET is the energy separation between the ground singlet state and the exciton
states, Eg is the energy gap for electrical conduction, IT is the binding energy of the
triplet excitons, and Is is the energy difference between a free electron-hole pair
state and the first excited singlet exciton state. Analytical expressions for the above
quantities as a function of the Hubbard hamiltonian parameters can be found in Ref.
[11.35].

The intensity I of the EPR spectra depends on ET through the equation

where a is a proportionality constant and k is the Boltzmann constant. The
excitation energies ET measured following the temperature dependence of the EPR
spectra with (11.3) for a number of TCNQ salts are reported in Table 11.1 together
with the measured zero field splitting parameters D and E/D of the triplet spin
hamiltonian. In Table 11.1 the data for [Ni(mnt)2][TMPD]2 (TMPD =
tetramethylphenylendiaminium) are also included. Here, the excitonic electrons are
delocalized onto the chain of TMPD+ cation radicals. D is of the same order of
magnitude for all of the complexes with the same stoichiometry and decreases on
passing from  to , while the anisotropy of the D tensor,
E/D, remains almost constant throughout the entire series. The direction of
maximum zero field splitting was always found to be parallel, within experimental
error, to the line connecting the centers of the molecular planes.
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Fig. 11.5. Energy level diagram for an isolated couple of 1/2 spins (left) and for a chain of weakly interacting
dimers (right) as computed in [11.35]

The zero field splitting tensor in comparison to the experimental one has been
generally estimated using a generalized point-dipolar approximation. In this
framework the tensor takes the form

where i, j = x, y, z and ρα and ρβ are the spin densities for atom α on molecule 1 and
for atom β on molecule 2. In (11.4) rαβ is the distance between atoms α and β. The
use of ρα and ρβ is the generalization of the point dipolar model. A number of
calculations have been performed on the TCNQ− anion to compute the spin
densities on the nuclear centers. In Table 11.2 we present some of these results and
report the D and E values for Rb2[TCNQ]2 computed by (11.4). Rb2[TCNQ]2 is a
1:1 salt which presents two stable crystal phases. In one of these phases the TCNQ
− ions are arranged in a regular stack of crystallographically equivalent molecules
and no fine structure splitting was detected in the EPR spectra. In the other phase
the stack can be described as formed by a stacking of  dimers and the
EPR spectra are typical triplet exciton spectra. The shortest and the longest
interplanar distances are 315 and 348 pm, respectively [11.33].

Table 11.1. Activation energy ET, and zero field splitting parameters for selected triplet excitonic systems
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aAbbreviations: MPM = morpholinium; DMB = 1,3-dimethylbenzimidazolinium; TMB = 1,3,5-
trimethylbenzimidazolinium; DMCHA = diethylmethylcyclohexyl ammonium; NBP = N-butylphenazinium; mnt =
maleonitriledithiolato; TMPD = N, N, N′, N′,-tetramethyl-p-phenylenediamine; TCNQF4 = 2,3,5,6-tetrafluoro
tetracyanoquinodimethane; Ph3PCH3 = triphenylmethylphosphonium; Ph3AsCH3 = trimethylphenylarsonium;
Et3NH = triethylammonium.

Table 11.2. Computed spin densities ρi for an isolated TCNQ—ion radical and fine structure parameters
calculated for 

aThe experimental values are D = 0.0133 cm−1 E = 0.0016 cm−1 (see Table 11.1).

It is apparent from Table 11.2 that the computed zero field splitting parameters
merely reproduce the order of magnitude of the measured zero field splitting tensor.
This can be due to either the inadequacy of the dipolar model to account for the

321



zero field splitting or to an inaccurate computation of the spin densities. Since the
computed zero field splitting parameters are always larger than the experimental
ones, another possibility for explaining the discrepancy between computed and
observed parameters is that the zero field splitting is determined by interactions
between more distant centers [11.18, 35]. In the hypothesis that the strongest
interaction is between far-neighbor centers, Silverstein and Soos [11.44] computed
D = 0.0126 cm−1 and E = 0.0015 cm−1 for Rb2[TCNQ]2 using the charge densities
of reference [11.40] in Table 11.2. In fact, distant interactions have been observed
in TCNQ salts as weak, fine structure lines flanking the more intense ones. These
lines have been attributed to excitons larger than the normal ones, i.e., delocalized
on more distant molecules [11.18, 35]. In Fig. 11.6 the variation of the zero field
splitting parameters as a function of the interplanar distance R is shown [11.18].

Several mechanisms contribute to the line width and to the temperature
dependence of the line widths of the triplet exciton spectra [11.28]. When two (or
more) crystallographically independent chains are present in the crystal they
become magnetically equivalent along appropriate crystallographic directions and
it is experimentally found that the line width of the signals observed when the static
magnetic field is along these directions are much sharper than in a general
orientation where two independent molecules are seen. This sudden change in the
line-width is due to interchain jumping of the excitons between the two
crystallographically nonequivalent chains. It is well known that in the slow jumping
limit, when two separate resonances are seen, the line width of each resonance is
given by

322



Fig. 11.6. Calculated zero field splitting parameters for a  dimer as a function of the interplanar

distance R. The dotted curve is computed using the equation D = 6660/R2. After [11.18]

where ГA and ГB are the line widths of chains A and B, respectively, without
hopping, νt is the hopping frequency, and νA and νB are the resonance frequencies
of A and B. The separation between the A and B lines is slightly smaller than νA –
νB. In the fast jumping limit, where only a single signal is observed, the line width
is given by

Equations (11.5-6) show that when , the lines are broadened by νt,
the hopping frequency, vice versa when the lines coincide, νA = νB, the width is
equal to l/2(ГA + ГB), i.e. the width without hopping. Single crystal measurements
thus allow one to measure νt at different temperatures. These measurements [11.28]
for Rb2 [TCNQ]2 and (TMB)2 [TCNQ]2 showed that νt versus T has the form

where ν0 = 1.1 x 102 MHz, EL =645 cm-1 for Rb2[TCNQ]2, and ν0 = 2.0 × 103

MHz, EL = 1210cm−1for(TMB)2 [TCNQ]2.ELin Eq. (11.7) can be seen as an
activation energy for the hopping of the exciton between translationally
nonequivalent chains. This energy should be nearly equal to the height of the barrier
of the trap depth associated with the local lattice distortions due to the exciton
formation.

Hibma and Kommandeur [11.28] have shown that the line width anisotropy
associated with νt can originate extra peaks in the polycrystalline powder spectra.

Low temperature line widths contain information about the motion of the excitons
along the chain. This motion depends on the relative values of EL, the self-trapping
energy, and ti, the transfer integrals. When ti is much larger than EL, the exciton
motion will be wavelike with no activation energy and the lattice distortion will be
distributed over a large number of centers. When EL is larger than ti, the exciton
will be self-trapped and a diffusional motion with an activation energy results. The
main consequences of the intrachain motion is the averaging out of any hyperfine
interaction even at low temperature. Soos [11.45] derived the following equation
for the contribution of the hyperfine interaction to the line width
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where νhf is the width of the hyperfine structure for a localized exciton, νj is the
hopping frequency along the chain, and νr is the characteristic frequency for three-
dimensional randomization processes. For a purely one-dimensional motion (11.8)
would be

Typical values of νav are of the order of a few MHz. It can also happen that at low
temperature the hyperfine splitting is only partially averaged out giving rise to an
anisotropic, inhomogeneously broadened (Gaussian) line shape. A typical example
is (TMB)2 [TCNQ]2.

The broadening and eventual collapsing of the fine structure lines with increasing
temperature has been attributed mainly to interactions between excitons. These
exchange interactions change the spin state of the interacting excitons thus
producing an averaging of the dipolar interactions. The dipolar splitting is therefore
dependent on the collision frequency: as the collision frequency increases, the
splitting becomes smaller and the lines broaden until eventually they merge into a
single line. Expressing the zero field splitting and line widths in MHz we have the
following equations

where Δν and Δν0 are line widths in the presence and in the absence of the
interaction, respectively, and d and d0 are the line separations. Equation (11.10)
holds in the slow exchange limit  and Eq. (11.11) holds in the fast exchange
limit . The interaction frequencies measured in this way show a
temperature dependence of the form (11.7). The preexponential and exponential
factors measured in a number of cases are reported in Table 11.3.

Table 11.3. Activation energies and preexponential factors for the line broadening processes due to exciton-
exciton interactions
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It should be noted that the values measured from Δν or d values are generally
different. Chesnut and Meinholtz suggested a procedure to overcome this anomaly
[11.46].

In many examples of EPR spectra of TCNQ compounds one or two strong central
lines at g ≈ 2.00 are present. The nature of this band has been widely investigated
in the system (MPM)2 [TCNQ2] [11.20, 26, 46, 48]. Here, the band has a larger and
a narrower component. The presence of this band is independent of the synthetic
method and the temperature dependence of the intensity has an activated form like
Eq. (11.7). The narrower line is Lorentzian with ΔHpp = 0.5 – 0.8 gauss and
isotropic. The broad line has an anisotropic line width with ΔHpp in the range 3–10
gauss and has a Gaussian line-shape. A number of explanations have been
suggested to account for the presence of these bands which include the formation of
molecular defects or the presence of free electron-hole pairs in the conduction
band. In the MPM salt ENDOR spectra have shown that the broad line is due to
isolated TCNQ− ions exactly in the same position as at the end or the beginning of a
TCNQ chain [11.49].
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Appendix A. Second Quantization

The formalism of second quantization, or the occupation number representation for
fermions, allows one to write multi electron wave functions and operators more
simply than using the Slater antisymmetrized product of one-electron functions
[2.1]. The main advantage of this method compared to that of Slater determinants is
that it leads to a compact notation, while the latter is rather cumbersome even for
small numbers of electrons. However, there is really no result which can be proved
within the second quantization formalism which cannot be obtained using the Slater
formalism.

In the one-electron approximation a quantum state of a system is defined by an
antisymmetrized product of the occupied one-electron spin orbitals. A typical form
of an N electron system is:

where A is an antisymmetrizer, ri represents space and spin variables of electron i,
and ki is a set of quantum numbers defining the state of the electron i.

When we have chosen a complete orthonormal set of one-electron spin orbitals
we can associate to each state (A.1) a vector formed by the occupation number of
each spin orbital of the complete set. This number, due to the antisymmetry
requirement of the wave function, can be either 0 or 1. Equation (A.1) gives the
occupation number representation of the system.

Let us consider a three-electron state as an example. In second quantization it is
represented by:

which indicates that one electron is present in Φk, one in Φ1, and one in Φm, while
all the others are vacant. ψklm is equivalent to the Slater determinant:
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It should be noted that while in the Slater representation ψklm is given by a 3 x 3
determinant, (A.2) is a vector in an infinite dimensional space.

A general state vector can be written as:

with nk = 0, 1. The state vector for which nk = 0, for all k, is a vacuum state. The
state (A.4) is orthonormalized by the conditions:

and it forms a vector of a Hilbert space.
All the possible state vectors can be constructed starting from the vacuum state

using creation operators, , i.e., an operator which creates an electron in the state
Φk. In the Slater formalism a creation operator transforms an N x N Slater
determinant into an (N + 1) x (N + 1) one. Of course, this (N + 1) (N + 1)
determinant will be nonzero if Φk is different from any other state already present,
otherwise the determinant will have two equal rows, i.e.,  creates a particle in
the k-th orbital provided it is initially vacant

If nk in the initial state is equal to 1, the result of the creation operator is zero:

Conversely, an annihilation operator ak removes an electron in the k-th orbital
provided that the orbital in question initially contained an electron:

If it operates on a vacant orbital, the result is zero:

In order to pass from the second quantization to the Slater formalism it is important
to arrange the one-electron orbitals in a given order and then to employ the same
order in the Slater determinant.

The creation and annihilation operators have several interesting properties:
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This is obvious if initially nk = 1. On the other hand, the first operator creates an
electron in k, if it is initially vacant, and the second will find nk = 1. Analogously
one has:

In fact, if nk and nj are zero in , 
. Condition 3 indicates that 

anti-commute. This can be symbolically written as:

It also follows from above:

In fact, let , then 

. For  and , so that 
, or equivalently . The eigenvalue of 

 is the occupation number of the k-th orbital.  defines a number operator
for the k-th orbital:

One- and two-electron operators can be expanded in terms of the creation and
annihilation operators. Let us start from one-electron operators, which we indicate
as Σifi. The matrix element of this operator between two states  and  is zero,
if the two vectors differ in more than one component orbital. If they differ in just
one orbital, e.g., k1 in  and k2 in , then:

In the right term we have omitted the subscript indicating the electron, because the
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matrix element is taken between one-electron states.
If the states are identical, then

If we define an operator:

then it is easy to show that this operator leads to the same matrix elements between
the  and  states as the Σifi operator.

The procedure can be extended to two-electron operators, yielding for a general
operator Σi ≠ jgij to the identity:

Among one-electron operators an interesting special case is that in which each fi
= 1, so that the total operator, N, represents the total number of electrons and is
called the number operator:

For our purposes it is important to establish the relations between second
quantized operators and angular momentum operators. Let us start from an
intuitively clear example and then obtain general formulae. Let us consider ,
and suppose that m and m′ are two orbitals on the same center, both with spin up.
Let us further assume that both orbitals belong to the same configuration, for
instance of d orbitals, and are characterized by two different values of the magnetic
quantum number, m and m′, respectively. The operator removes an electron from m′
and creates another one in m, keeping the spin up. The effect of the operator has
been that of changing the overall M = Σimi value by m′ – m. This is the same effect
of angular momentum operators, therefore, it can be hoped to relate  to
angular momentum operators. This indeed has been done. For orbitals belonging to
the same 1 manifold, the following relations must hold [A.2]:

where
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and

On and Oω are angular momentum operator equivalents [A.3], i is the number of
electrons. A list of operator equivalents in common use is given in Table A.1.

Equation (A.24) looks formidable, but its use is actually easier than it might be
supposed. If, for instance, we consider states with no orbital angular momentum
localized on one center A, only the spin variables will be important in (A.24). We
find

Table A.1. Relations between some common operator equivalents and angular momentum operators

Table A.2. Values of 
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where  is a shorthand notation for . The actual

values are given in Table A.2. The expressions for a different center B are
identical. An orbitally nondegenerate state corresponds to a configuration of half-
filled orbitals, therefore, we find that α = α′ and β = β′. Using Table A.2 and Eqs.
(2.49–52) we find that the following relations must hold:

By summing over all the spin states we obtain Eq. (2.53).

Table A.3. Values of [1]mm′

The second case which is worth considering is that of a system which has one
orbitally degenerate and one orbitally non-degenerate state. With the former we
may associate an angular momentum 1 = 0, while with the latter, for instance, 1 = 1,
as shown in Sect. 2.6. Then using (A.24–26):
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for the degenerate center, and

for the non-degenerate one. (A.30) can be written as:

[1]mm′ is given in Table A.3 We may perform the summations on the spin variables
first and we find:

Therefore (2.53) can be rewritten as:

By writing out explicitly [1]mm′, and passing from the imaginary basis  to the
real one, we finally obtain the expression (2.57).
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Appendix B. Properties of Angular Momentum
Operators and Elements of Irreducible Tensor
Algebra

B.1  Properties of Angular Momentum Operators

The angular momentum operator of a quantum system, J, is defined by three
cartesian components Jx, Jy, and Jz having the following commutation relationships
(units: ħ = 1):

or, in terms of the operators J± = Jx ± iJy

Basis vectors can be represented by the quantum numbers, J and M, plus any
other set of quantum numbers, α, which must be added to J and M to form a
complete set. They have the following properties:

Equation (B.5) has been written following the Condon and Shortley phase
convention. The  kets form a (2J + 1)-dimensional vector space. J in
(B.3–6) can take any integer or half-integer positive value and – J ≤ M ≤ J.

B.2  Addition of Two Angular Momenta. Clebsch-
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Gordon Coefficients and “3j” Symbols

B.2.1  Definitions

Let jA and jB be angular momenta of quantum systems A and B, respectively. The
total angular momentum of quantum systems A and B together is

The tensor product of the (2jA + 1) kets of A and (2jB + 1) kets of B gives a
space of (2jA + 1) (2jB + 1) kets which are simultaneous eigenvectors of , , jAz,
and jBz:

The basis vectors of (B.7) can be obtained from (B.8) by a unitary
transformation as simultaneous eigenvectors of , , J2, Jz, which are all
commuting operators, as

The coefficients of the unitary transformation  are called
Clebsch-Gordon coefficients.

B.2.1.1  Equivalent Definitions

1   In: Condon EU, Shortley GH (1935) The theory of
atomic spectra, Cambridge University Press, New York

2.   In: Biedenharn LC (1952) Tables of the Racah coefficients, Oak
Ridge National Lab., Physics Division, ORNL-1098

3.   where it has been considered that M = mA + mB; In: Rose
ME Elementary theory of angular momentum, (1957) Wiley, New York

4.   In: Wigner EP (1958) Group theory and its application to the quantum
mechanics of atomic spectra, Academic, New York

B.2.1.2  Phase Convention and Properties

A commonly used convention to fix the relative phase of kets (B.9) is
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1   is real and positive.
2   follows Eq. (B.5).

The Clebsch-Gordon coefficients have the following main properties:

1.  They are real and form an orthogonal matrix;
2.  The coefficients are different from zero, if mA + mB = M and |jA – jB | ≤ J ≤ jA +

jB;
3.  .

B.2.1.3  The “3j” Symbols

Wigner defined the following quantities which are proportional to the Clebsch-
Gordon coefficients in order to better exploit the symmetry properties:

The 3j symbols have the following properties:
1.  Even permutations of the columns leave the numerical value unchanged:

2.  Odd permutations of the columns multiply the value by (-1)jA + jB + J:

3.  When the signs of mA, mB, and M are simultaneously changed, the value is
multiplied by (-1)jA + JB + J:

4.  Regge symmetry: a 3j symbol can be transformed in the square matrix:

336



If this matrix is reflected through its diagonals or the rows or columns are
cyclically permuted, the 3j symbol which is associated with the resultant matrix has
the same value as the original one. These rules add 72 new symmetries to the
symmetries in 1, 2, and 3.

B.2.2  Methods of Calculations

A general formula for the calculation of the 3j symbols has been developed by
Racah:

with α + β + δ = 0 and |a – b| ≤ d ≤ (a+b) and
Γ(abd) = (a + b – d)!(b + d – a)!(d + a – b)!/(a + b + d + 1)!

In (B.11) Σt extends over all integral values of t for which the factorials are ≥ 0.
The number of terms in the summation is μ + 1, where μ is the smallest of the nine
numbers:

a ± α; b ± β; d ± δ; a + b – d; b + d – a; d + a – b.

B.2.2.1  Special Formulae
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where J = j1 + j2 + j3.

B.3  The “6j” Symbols and the Racah W Coefficients

B.3.1  Definitions

The 6j symbols appear in the case of the coupling of three angular momenta j1, j2,
and j3 as the coefficients of the unitary transformation which connects two different
coupling schemes. From the direct product of the vector spaces of the three angular
momenta j1, j2, and j3 we get a (2j1 + 1)(2j2 + 1)(2j3 + 1)-dimensional space
spanned by the kets . Defining a
total angular momentum of the system as J = j1 + j2 + j3, the subspace of angular
momentum (JM) can be defined according to:

min∣j1 ± j2 ± j3∣ ≤ J ≤ (j1 + j2 + j3); – J ≤ M ≤ J.

In general, different systems of basis vectors can be defined according to the
coupling scheme of the angular momenta:

1.  Coupling scheme j1 + j2 = j12; j12 + j3 = J: vectors 

2.  Coupling scheme j2 + j3 = j23; ji + j23 = J: vectors 

Since the kets in (B.12) and (B.13) span the same vector space as those in (B.8)
and (B.9), they are related by a unitary transformation
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The coefficients in (B.14) can be arranged in a 6j symbol using the following
definition:

Symbols differing from (B.15) by a phase factor have been defined by Racah and
are still used. They are defined by:

B.3.2  Properties

1.  The 6j symbols are real.
2.  A 6j symbol is left unchanged by interchange of any two rows or by switching

the upper and lower members of any two rows.
3.  A 6j symbol is nonzero if the elements of each of the triads

a)  Satisfy the triangular condition (ji, jk, j1) = |ji – jk| ≤ ji ≤ ji + jk;
b)  Have an integral sum.
4.  The 6j symbols are related to the 3j symbols associated with the triad (B.17) by

the equation:

5.  Orthogonality relation:
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6.  The Regge symmetry:

B.3.3  Methods of Calculation

A general formula for the calculation of the 6j symbols has been reported by Racah:

where the sum over t and the Γ symbols are the same as in (B.11). The number of
terms in the summation is μ + 1, where μ is the smallest of the 12 numbers:

B.3.3.1  Special Formulae

1.  One of the j is zero:

2.  The smallest j is equal to 1/2:
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3.  The smallest j is equal to 1:

B.4  The “9j” Symbols
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B.4.1  Definition

The 9j symbols can be defined for the coupling of four angular momenta like the 6j
symbols have been defined for the coupling of three angular momenta.

The total angular momentum of a 4j quantum system is J = Σi ji. The subspace of
angular momentum (JM) can be defined in the Πi; (2ji + 1)-dimensional space
spanned by the vectors:

according to different coupling schemes. Let us consider for example the two
coupling schemes

1.  j1 = j2 = j12; j3 + j4 = j34; j12 + j34 = J: vectors .
2.  ji + j3 = j13; j2 + j4 = j24; j13 + j24 = J: vectors .

The coefficient of the unitary transformation which connects the basis vectors of
1 and 2 define the following 9j symbols

B.4.2  Properties

1.  The 9j symbols are real.
2.  A 9j symbol is invariant in the even permutation of rows and columns and in a

reflection through one of the diagonals.
3.  A 9j symbol is multiplied by (–1)r, where r = Σall j ji in the odd permutation of

rows and columns.
4.  A 9j symbol can be expressed in terms of 3j symbols according to:
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5.  Orthogonality relation:

B.4.3  Special Formulae

1.  One of the j is zero: the 9j symbol collapses to a 6j symbol:

B.5  Irreducible Tensor Operators

B.5.1  Definitions

A tensor operator can be defined as a set of operators that transform linearly one
into another under rotation of the coordinate system. A set of (2k + 1) operators
which transform linearly one into the other is called a kth-rank tensor operator or a
tensor operator of order k. A scalar operator, O, is a zero-rank tensor operator, a
vector operator, O, is a first-rank tensor operator having cartesian components Ox,
Oy, and Oz. A tensor operator is generally indicated by the symbol Tkq(O), where k
is the rank, q is in the range ± k, and O indicates the type of quantum mechanical
operator used. Unless it is explicitly necessary we will omit in the following the O
symbol, meaning any tensor operator of rank k.

A tensor operator Tkq(q = – k, . . . , k) is called irreducible tensor operator if its
(2k + 1) components transform under a rotation R of the coordinate system
according to:
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where Rk is the Wigner rotation matrix and spans the k-th irreducible representation
of the real orthogonal rotation group SO(3). Through (B.22) the components of an
irreducible tensor operator can be expressed as a linear combination of the more
common cartesian components. Some examples are shown in Table 3.1.

B.5.1.1  Compound Irreducible Tensor Operators

The tensor product of two irreducible tensor operators of rank k1 and k2, Tk1 and
Tk2, can be defined as the set of (2k1 + 1) (2k2 + 1) operators:

The set of operators (B.23) is in general reducible and we can construct from it
an irreducible tensor operator of order k called the tensor product of Tk1 and Tk2
of order k according to:

When not explicitly stated, Tk1 and Tk2 are commuting tensor operators such as
operators acting on two vector spaces 1 and 2 separately, like SA and SB in Chap.
3, or operators acting separately on spin and space coordinates, like the spin-orbit
coupling operator of one particle ŀs.

According to (B.10) we can rewrite (B.24) as

where one necessarily has |k1 – k2| ≤ k ≤ (k1 + k2).
It is an obvious extension of the above definition to construct tensor operators as

products of more than two irreducible tensor operators and the relative formulae
will not be explicitly given here.

B.5.1.2  Tensor Product of Two First-rank Irreducible Tensor
Operators

From the tensor product of two irreducible tensor operators with k1 = k2 = 1 we get
three sets of irreducible tensor operators corresponding to k = 0, 1, and 2. For k = 0
from (B.25) one has
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The usual scalar product of two vector operators (T·T) = TxTx + TyTy + TzTz is
related to (B.26) by

or more generally

For k = 1 one has

For k = 2 one has

It is interesting to note that (B.30) applied to two tensor operators acting on the
same set of coordinates, such as two spin operators, gives identically zero, as a
consequence of the commutation relations. This can be easily verified by the
reader.

B.5.2  Properties of Irreducible Tensor Operators

1.  Commutation relations with the total angular momentum operator J (Racah’s
commutation relations):
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2.  Adjoint tensor operators.
The adjoint or Hermitean conjugate, , of a tensor operator Tkq is defined
by:

where + denotes the Hermitean conjugate. Using (B.31) the spherical harmonics
Y1m form an Hermitean tensor operator. Definitions equivalent to (B.31) are:

With respect to (B.32) the spherical harmonics of odd order are anti-Hermitean.
3.  Wigner-Eckart theorem:

where  is called reduced matrix element. τ indicates any set of
quantum numbers required to completely specify the quantum system. The following
form of the theorem is sometimes used:

The conjugate of a reduced matrix element is (k integral)

Equation (B.33) or (B.34) can be used to compute the matrix element of any
tensor operator provided the reduced matrix elements are known.

B.5.3  Reduced Matrix Elements of Special Operators

1.  Identity operator:

2.  Total angular momentum:
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3.  Tensor product of two irreducible tensor operators.
Let Tk1 be an irreducible tensor operator acting on the vector space 
and Tk2 an irreducible tensor operator acting on , then

There are some particular cases in which the 9j symbol in (B.35) reduces to a 6j
symbol:

Tk2 = 1 and k = k1,

b)  Tk1 = l and k = k2,

c)  Scalar product (k = 0 and k1 = k2).

4.  A particular case often met in practice arises when the states are classified by
only one total angular momentum, J, and one magnetic quantum number, M. In
this situation both Tk1 and Tk2 act on the same vectors and the following
equation holds:
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5.  Particular expressions.

a)  Tk1 = T1(j1)

6.  Coupling of three commuting angular momenta.
A general expression has been derived by applying (B.35) twice for the reduced
matrix element of the irreducible tensor operator built up from the coupling of
three irreducible tensor operators acting on different spaces:
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